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Abstract. We propose and prove sound a novel type system for securing
information flow in a core of JavaScript. This core takes into account the
defining features of the language, such as prototypical inheritance, exten-
sible objects, and constructs that check the existence of object properties.
We design a hybrid version of the proposed type system. This version
infers a set of assertions under which a program can be securely accepted
and instruments it so as to dynamically check whether these assertions
hold. By deferring rejection to runtime, the hybrid version can typecheck
secure programs that purely static type systems cannot accept.

1 Introduction

Client-side JavaScript programs often include untrusted code dynamically loaded
from third-party code providers, such as online advertisers. This issue raises the
need for enforcement mechanisms that isolate trusted code from that coming
from other sources. For instance, trusted programs must not be allowed to leak
secret values to untrusted parties. The absence of security leaks can be formally
expressed using one of the many flavors of noninterference (NI) [12], which is a
class of properties that have been classically used to define secure information
flow. Here, we aim at enforcing termination-insensitive NI, meaning that pro-
grams are assumed not to leak information through their termination behavior.

When designing an information flow enforcement mechanism, it is vital that
the “abstractions made in the attacker model be adequate with respect to poten-
tial attacks” [22]. In the context of this work, this means that security policies
should be rich enough to capture the main attacks coming from JavaScript code.
Hence, we present a type language for expressing security policies in JavaScript
that takes into account the defining features of the language, such as prototypical
inheritance, extensible objects, and constructs to check the existence of object
properties. We then design a type system (TS) for statically verifying that a
program abides by the specified policy.

One of the major issues in developing static analyses for JavaScript is the
fact that “property names can be computed using string operations” [16], which
renders intractable the problem of deciding at the static level which property
is actually being accessed in a given property look-up. Consider the following
program o = {}, o.prop_A = 0, o.prop_B = 1, o["prop_"+ £()] (where the + stands



for string concatenation) that creates an object o with two properties prop_A

and prop_B that it assigns to 0 and 1, and then tries to read one of them
depending on the output of £. In this example, deciding which property is being
accessed is equivalent to predicting the dynamic behavior of function £, which
is, in general, undecidable. In order to overcome this issue, previous analyses
for enforcing confinement properties in JavaScript (such as that of [16]) have
chosen to restrict the targeted language subset, excluding property look-ups
with arbitrary expressions.

We propose a new approach, exploiting the connections between static and
runtime analysis to avoid rejecting programs that are in fact secure. The key
insight of our approach is that, since we aim at enforcing termination insen-
sitive noninterference, the analysis may infer a set of assertions under which a
program can be securely accepted and then dynamically verify whether or not
these assertions hold. The original program is instrumented in such a way that
if the assertions on which it is conditionally accepted fail to hold, its instrumen-
tation diverges.

2 Core JavaScript

Objects are the central datatype of JavaScript. In contrast to class-based lan-
guages where the fields of an object are restricted by the class to which it belongs
(which is statically specified), a JavaScript object is an unrestricted partial map-
ping from strings to values. The strings in the domain of an object are called its
properties. There are no classes, but every (non-native) object has a prototype
from which it can inherit properties. Prototypes are also objects. Hence, pro-
totypical inheritance is a form of delegation. In order to look-up the value of a
property p of an object o, the JavaScript engine first checks whether p belongs
to the set of properties of o. If so, the property look-up yields o(p), otherwise
the engine checks whether the prototype of o defines a property named p, and so
forth. The sequence of objects that can be accessed from a given object through
the inspection of the resp. prototypes is called a prototype-chain.

JavaScript features first-class functions. Functions can be invoked in the stan-
dard way or they can be used as methods. When assigning a function to a prop-
erty of an object, the function becomes a method of the object. When calling a
function as a method, the keyword this is bound to the receiver object. Every
method accessible to an object through its prototype-chain can be called as a
method of that object. For instance, if the method m is accessible to object o
through its prototype-chain, when calling o.m(---), the keyword this is bound
to o and not to the object that actually defines m in the prototype-chain of o.
Hence, prototypical inheritance can be seen as a device for method sharing.

Another important feature of JavaScript is that programs are not only al-
lowed to dynamically add new properties to the domain of an object, but they can
also delete existing ones. A program can check whether a property is accessible
from an object through its prototype-chain using the keyword in. Interestingly,
the property look-up construct can also be used to check the existence of prop-



value | function™(x){var’t" " 4y ... y,: e} function literal

this this keyword | {}° object literal
eo op’ ey binary operation | eo(el)i function call
z! variable | eole1, P)(e2)’ method call
r=ce variable assignment | eg, e1 sequence
eo [ehP]i property look-up | eo 7t (e1) : (e2) conditional
eole1, P| = es property assignment | delete’ e.p property deletion
eo inf e membership testing

e, €o, e1 and eg represent expressions, i and j represent program indexes, x, Y1, ..., Yn

represent variable names, and op represents binary operators.
Fig. 1. Syntax of Core JavaScript

erties, since the looking-up of a property that is not defined in the prototype
chain of an object does not yield an error but instead undefined.

We define a JavaScript-like language, called Core JavaScript, whose syntax
is given in Figure 1. As in [24], property look-ups, method calls, and property
assignments are annotated with a set P of the properties to which the cor-
responding expression may evaluate, which we call a look-up annotation. For
instance, in the expression ofe, {"foo", "bar", "baz"}], the look-up annotation
means that e always evaluates to a string equal to "foo", "bar", or "baz". We
similarly annotate the occurrences of the in expression with the set of proper-
ties that may be checked. A look-up annotation P is correct if the expression
to which it applies always evaluates to a string in P. Moreover, we say that
P is minimal if there is no other correct P’ such that P’ C P. It is trivial to
instrument a program so that it diverges if its look-up annotations are not cor-
rect. For instance, one could easily modify the specification of the hybrid TS to
ensure the correctness of look-up annotations. This would, however, clutter up
the presentation. Hence, we leave it implicit and in the rest of the paper assume
that look-up annotations are correct. But they do not have to be minimal — the
look-up annotation corresponding to the set Str of all strings is always correct.
Additionally, some program constructs are annotated with unique indexes to be
used by the instrumentation, and object and function literals are annotated with
the corresponding security type. We say that two expressions e and e’ are equal
up to look-up annotations, written e = €', if they only differ in look-up annota-
tions. Whenever a look-up annotation is omitted, it is assumed to be Str, and
the notation o.p is used as an abbreviation for o["p",{"p"}].

Core JavaScript is intended to model a realistic subset of the JavaScript
specification [2]. However, in order to simplify the presentation, we do not model
the return statement—functions are assumed to return the value to which their
body evaluates. Furthermore, given that most implementations do allow explicit
prototype mutation, we depart from [2] and include this feature through a special
property _prot_. For instance, o._prot_ = o_p sets the prototype of o to o_p, and
o._prot_ evaluates to the prototype of o.

Figure 2 presents the running example that is used throughout the paper.
It consists of a fragment of the code for a simple contact management online
application. The cM variable holds the Contact Manager object. The contact
manager stores contacts in an object bound to its property contact_list, which
is used as a table whose entries are the last names of the contacts (extended with



CM = {}, CM.proto_contact = {}, CM.contact_list = {},
CM.proto_contact.printContact = function() { this.lst + "," + this.fst },
CM.proto_contact.makeFavorite = function() { this.favorite = null 1},
CM.proto_contact.isFavorite = function() { "favorite" in this },
CM.proto_contact.unFavorite = function() {

"favorite" in this ? delete this.favorite : true 1},

CM.createContact = function(fst_name, lst_name, email) { var contact;
contact = {}, contact.__proto__ = proto_contact, contact.fst = fst_name,
contact.lst = lst_name, contact.email = email, contact 1},

CM.storeContact = function(contact, i) {
var list, key; list = this.contact_list, key = contact.lst+i,

key in list ? CM.storeContact(contact, i+1) : list([key] = contact }

Fig. 2. A Simple Contact Manager

unique integers to avoid collisions) and whose values are the actual contacts. A
contact is simply an object containing a first name (£st), a last name (1st), an
e-mail address (email), and a flag favorite. This example illustrates the typical
use of prototypical inheritance in JavaScript. We create a “fixed” object bound to
the property proto_contact of CM that stores all the methods contact objects are
assumed to implement and every time a contact object is created, its prototype
is set to CM.proto_contact. Hence, every contact object implements the methods:
(1) printContact (that generates a string with a description of the contact), (2)
makeFavorite (that marks the contact as favorite), (3) isFavorite (that checks
whether the contact is marked as favorite), and (4) unFavorite (that deletes the
property that marks the contact as favorite).

Formal Semantics. We model objects as partial functions mapping strings to
values in the set PrimURefUF, containing all primitive values, references, and
parsed function literals. The set Prim includes strings, numbers, and booleans,
and two special values: null and undefined. References can be viewed as pointers
to objects, in the sense that every expression that creates an object yields a new
reference that points to it. As in [7], we assume a parametric object allocator.
The properties reserved for the internal use of the semantics are prefixed with an
“@”. We use dom(o) for the set of properties of o (excluding internal properties).
A memory p: Ref — Str — PrimUTRef U F, is a mapping from references to
objects [2]. In the following, we assume that the binding of variables is modeled
using scope objects [15] and that the evaluation of a function literal triggers
the creation of a function object storing its parsed counterpart (in the property
@code) and a reference to the scope object that was active at the time of its
evaluation (in the property efscope). We use a relation Rgeope for modeling the
variable look-up procedure. If (i, 7, ) Rscope ™' then 7 is the reference of the
scope object that is closest to u(r) in its scope chain and that defines a binding
for . Thus, u(r’')(x) is the value associated with x in that scope. We assume
that memories include a reference to a special object called global object, pointed
to by a fixed reference #glob that binds global variables. We make use of a big-
step semantics for Core JavaScript |} (given in Appendix A) with the following
shape: r - (u, X, e) | (¢, X', v), where: (1) r is the reference of the active scope
object, (2) u and p’ are the initial and final memories, (3) X and X’ are initial
and final labelings, (4) e is the expression to evaluate, and (5) v is the computed
value. A labeling X : Ref — T is a mapping from references to security types.
Upon the evaluation of a function/object literal of type 7, the semantics extends
the current labeling >’ with a new mapping from the newly created reference to
the corresponding type.



The specification of security policies usually relies on two key elements: a
lattice of security levels and a labeling that maps resources to security levels. In
the examples, we use £ = {H, L} with LH, meaning that resources labeled with
L (low) are less confidential than those labeled with H (high). Hence, H-labeled
resources may depend on L-labeled resources, but not the contrary, as that would
entail a security leak. We use , , L, and T for the greatest lower bound (gib), the
least upper bound (lub), the bottom level, and the top level, respectively.

3 Challenges for IFC in Core JavaScript

Before proceeding to the formal definition of secure information flow in Core
JavaScript, we review the main challenges imposed by the particular features of
the language.

Extensible Objects. In JavaScript, the programmer can dynamically add and
remove properties from objects. In fact, objects are commonly used as tables
whose keys are computed at runtime. Hence, in many contexts, it is not realistic
to expect the programmer to statically know the properties of the objects that
are created at runtime. However, security-wise, the programmer often knows the
security level of the contents of an object even when its actual properties are
unknown. For instance, in the Contact Manager example, the precise structure
of contact_list cannot be statically known because the last names in its domain
are dynamic inputs. Nevertheless, the programmer should be allowed to specify
that the value associated with every property of contact_list is of type Contact.

Leaks via Prototype Mutations. The fact that a prototype of an object is
allowed to change at runtime may be exploited to encode security leaks. For
instance, suppose that the first and last names of a contact are of level L and
that we create a new object, bound to CM.proto_contact_new, to be used as the
prototype of contact objects, that prints contacts in a different way:

CM.proto_contact_new.printContact = function(){this.fst +" "+ this.lst}

The output of printContact is low for the original and new methods, since, in
both cases, it only discloses information at level L. However, the expression:

h ? (c._proto_ = CM.proto_contact_new) : (null), 1 = c.printContact()

is illegal because, depending on the value of a high variable h, it changes the
prototype of ¢ and therefore the behavior of printContact, which is supposed
to generate a low output. Concretely, depending on the value of h, the attacker
sees the contact printed last _name, first _name or first name last _name.
To tackle this problem, we forbid the prototype of a low object to change in
a high context and therefore the assignment c._prot_ = CM.proto_contact_new is
considered illegal by the enforcement mechanism.

Leaks via the Checking of the Existence of Properties. A program can
dynamically add and remove properties from objects. Furthermore, a program
can check whether a property is defined in the prototype-chain of an object using
the keyword in. Thus, the mere existence of a property in the domain of an object



may disclose confidential information. As in [14], we associate every property in
the domain of an object with an ezistence level. For instance, suppose that the
user of the contact manager does not want to disclose which are his favorite
contacts. In this case, the existence level of property favorite must be set to H.
However, the fact that a property is confidential does not imply that its existence
is confidential. Suppose that the e-mail address associated with each contact is
of level H. This does not mean that the existence level of the property email
should be set to H.

Leaks via the Global Object. During the execution of a function call, the
keyword this is bound to the global object, whose properties are the global vari-
ables of the program. Hence, it is possible to encode illegal information flows
regarding confidential global variables using the keyword this inside a function.
For instance, the program function(){ 1 = this.cookie}() produces the same ef-
fect as 1 = cookie. In order to detect this type of leaks, the security type of a
function that may be called directly (as opposed to as a method) must use the
type of the global object as the type of this and the type of the global object
should be used as the global typing environment. For instance, in the Contact
Manager example, the global object defines a property CM bound to the contact
manager. Hence, the global typing environment should map the global variable
CM to the type of the property cM of the global object.

Pre-methods and Recursive Types. In contrast to class-based languages,
where method types are specified inside their classes, JavaScript functions are
first-class values which can be defined anywhere in the code and later assigned
to properties of arbitrary objects. This creates a dependency between types for
functions and types for objects, because object types include the types of their
methods and function types include the type of the objects to which the keyword
this is bound during execution. To break this circularity, we make use of equi-
recursive types. However, to keep the presentation fairly simple, we restrict the
occurrence of type variables to the type of this in function types.

3.1 Security Types for Core JavaScript

Every security type 7 = 77 is obtained by pairing up a rew type 7 with a security
level o, that gives an upper bound on the levels of the resources on which the
values of that type may depend.! Let p, o, and k range over the sets of strings,
security levels, and type variables. The syntax of raw types is as follows.

Tu=prM | (7.7 2 F) | (ke D7) | pr(p” oy 07 s w7 1) | psp” T, pT )
We denote by T the set of all security types. Given a security type 7, lev(7)
denotes its level and |7 ] its raw type. For instance, lev(priv™) = L and |[prim” | =
prim. We define 77 as |7]'V(F)Y7. Hence, (Prmv?)? = prim'?. A typing environment
I' is a mapping from variables to types.

! For instance, a primitive value of type priM® may only depend on low resources. The

same applies to an object o of type ,un.(pL : PRIMH>L. However, the value associated
with o’s property p may depend on high resources.
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L
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storeicontactL : (k.(Teontact, PRIML) = Tcontact>L~, _proto_ "~ : pRIME

Fig. 3. Typing Environment for the Contact Manager - I'car = [CM — Tou]

The type PRIM is the type of all primitive values. The type (79.71 RN To) is
the type of all functions that map values of type 71 to values of type 75 and
during the executiton of which the keyword this is bound to an object of type
7o. The level o is the writing effect [22] of the function, i.e., a lower bound
on the levels of the resources created/updated during its execution. The type
pk.(pg® : To, -+, PIm T, %7 ¢ Ty is the type of all objects that potentially
define properties pg, - -- ,p,, mapping each property p; to a value of type 7;.
The type assigned to the * is the default type. Every property p; is additionally
associated with an existence level o;. The level o, is the default existence level.
We use the notation dom(7) for the set containing the properties that appear
in 7 (including = if it is present), and the notation *(7) for the pair (o, 7s)
consisting of the default existence level and security type of 7. The fact that
an object has type 7 does not mean that it defines all properties in dom(7),
but rather that it potentially defines the properties in dom(7). Moreover, if
x & dom(7), then o is assumed to be non-extensible, meaning that only properties
in dom(7) can be added to o. This is enforced in Rule [PROPERTY ASSIGNMENT] in
Figure 5 that checks whether the look-up annotation is contained in the domain
of the corresponding object type, whenever that type does not include the .
Figure 3 presents a typing environment for the Contact Manager example. We
omit the specification of the type 7proto contact that coincides with 7eoptaer in
every property except in _prot_ for which it does not define a mapping, since
objects of that type are not supposed to have a prototype.2

Another important aspect of object types is that they must reflect the whole
prototype-chain accessible through the corresponding objects. Hence, in the Con-
tact Manager example, the security type assigned to contact objects also includes
the methods that the corresponding prototype implements.

3.2 The Attacker Model and the Meaning of Security Types

In order to formally characterize the “observational power” of an attacker, we
take the standard approach of defining a notion of low projection of a memory
at a given level o [17], which corresponds to the part of the memory that an
attacker at level o can observe. This defintion makes use of a function I that
receives as input an object security type 7 and a string p and outputs a pair
consisting of the existence level and the security type with which 7 associates p:

. (o {7/kI ) T =pk- p]t T, )T AD =D,
" (7.p) = {(0*,{7"/,‘4,}7"*) if 7= pk.(-o %7 T, )7 Ap & dom(T)

2 In the specification every object has an implicit prototype: Object.prototype.



where {79/k}71 denotes the capture-avoiding substitution of k for 7y in 71. In-
terestingly, given an object type 7, if we define " (7) : Str — T, as the function
that maps every identifier p to the second element of I" (7, p), one can interpret
an object type as a typing environment. Indeed, programs must be typed in a
typing environment matching the type of the global object 7405, meaning that:
if I'(x) = 7y, then P (7giop, ) = (07, 7).

Informally, an attacker at level o can see: (1) the references whose corre-
sponding object types are annotated with levels C o, (2) all of the values that
are reachable from visible properties in visible references and are annotated with
levels C o, (3) the existence of visible properties in visible references, and (4)
the code of visible function objects as well as the low-projections of their corre-
sponding scope-chains. Since every function object in memory is associated with
the scope object that was active at the time of its evaluation, the low-equality
must take into account the scope-chains that are stored in memory. To this end,
we make use of a function SChain that given a memory and a reference to a
function object outputs the corresponding scope-chain and we extend the defi-
nition of low-projection to scope-chains. However, due to lack of space and since
this issue is mainly connected with technical details regarding the way we model
the semantics of the language, we give these two definitions in Appendix B.

Definition 1 (Low-Projection and Low-Equality). The low-projection of
a memory pu w.r.t. a security level o and a labeling X is given by:

p127= {(r,2(r)) | lev(X(r)) C o}

U {(r,p,v) | 7 (X(r),p) = (¢/,7) Ao’ Ulev(7) Ulev(X(r)) C o Ap € dom(u(r))}
UA(rp) [ 7 (X(r),p) = (o', 7) Ao’ Ulev(X(r)) E o Ap € dom(u(r))}

U {(r, f, SChain(u,r) 17) | lev(X(r))co A f = u(r)(@code)}

Two memories poy and py, respectively labeled by Xy and X1 are said to be low-
equal at security level o, written ug, Xy ~o p1, 21 if they coincide in their re-
spective low-projections, po [0 = py [17.

Figure 4 presents the memory resulting from the execution of the program below:

x = CM.createContact("Jane", "Doe", "jane.d@gmail.com"),
y = CM.createContact("John", "Doe", "john.d@gmail.com"),
CM.storeContact(x, 0), CM.storeContact(y, 0), makeFavorite(x)

together with its low-projections at level L for the typing environment given
in Figure 3 (I'car). Remark that, while the values of both e-mail addresses
disappear, their existence remains visible. In contrast, the property favorite is
removed from the contact object of Jane.

Informally, a program is noninterferent (NI) if its execution on two low-equal
memories always produces two low-equal memories. Hence, an attacker cannot
use a NI program as a means to disclose the confidential contents of a memory.

Definition 2 (Noninterference). An expression e is said be noninterferent
w.r.t. a typing environment I' if for any two memories u and p' respectively
well-labeled by X and X', if #glob & (u, X, e) | (g, X, v), #globt (1, X" e) |
(u},E},v’), w, X oo ! X and I’ =1 (X (#glod)), then: pip, Xy ~q ,u},E}.
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« makeFavorite"

L

« makefavorite

« isFavorite" « isFavorite

* unfavorite" « unfavorite"

«_proto_L
o st
o lsth

« proto_contact* Janet « proto_contact"

L
« contact_list* . Doe « contact_list"
*/email jane.d@gmail.com

« favorite" L

«_proto_" ¢
o fott
o lstt

*_proto_
o fstt
o lsth

« Doeo* « Doeo*

« Doe1" Doel « Doe1*
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Fig.4. A memory and its low-projection

The definition of noninterference is standard except for the requirement that
the typing environment be consistent with the type of the global object. Fur-
thermore, the initial memories are assumed to be well-labeled, meaning that the
types of the references in memory must “match” their corresponding values. This
definition is formally given in Appendix B. For simplicity, the definition of non-
interference does not impose any restriction on the generated outputs. This does
not constitute a problem, since any expression e that produces a high output
can be trivially re-written as h = e, null.

3.3 A Type System for IFC in Core JavaScript

Figure 5 presents the proposed static TS for securing information flow in Core
JavaScript. Typing judgements have the form: I' F e : 7,0, where (1) I' is the
typing environment, (2) e the expression to be typed, (3) 7 the type that is
assigned to it, and (4) o its writing effect, that is, a lower bound on the levels
of the resources that are updated/created when e is evaluated.

The type system assumes two basic restrictions on the syntax of security
types. First, we require the existence level of a property to be lower than or
equal to the level that annotates its corresponding security type. This restriction
forbids the specification of an object type that associates an invisible property
with a visible value. Second, we require the security level that annotates an
object type to be higher than or equal to the level that annotates the type of its
prototype. This constraint is meant to prevent leaks via prototype mutations.
If the level of the prototype of an object o is high, then the prototype of o is
allowed to change in a high context. However, such changes remain invisible to
a low observer, because the level of o is itself high, meaning that a low observer
can never see any of the contents of o.

In order to type expressions that either result from the combination of subex-
pressions with different types, or whose evaluation may yield values of different
types (for instance, a property look-up with an imprecise look-up annotation),
the TS makes use of an ordering on security types. The ordering C on security
levels induces a simple ordering =< on security types: 7o < 71 iff lev(7o) C lev(71)
and |7p| = |71, where = stands for syntactic equality up to arbitrary unfoldings
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Fig. 5. Typing Secure Information Flow in Core JavaScript

of raw types [3]. Every two object security types in the subtyping relation need
to have the same corresponding raw type, because, while property look-ups are
covariant with the type of the property, property assignments are contravariant.
Concretely, given an obect of type 7o = us.(p” : PrRiM")~ bound to x and an object
of type 71 = pk.(p" : PRM™T)L bound to y, if we let 79 < 71, the expression y =
x, y.p = h, which is not noninterferent, would be typable. Given a raw type 7,
the set {7 | [7] = 7} of its corresponding security types (ordered by <) forms a
lattice. The corresponding lub and glb Y, A : T x T — T are defined as follows:
fo 71 =17 e [7] = 0] = [71] Alev(7) = lev(o) flev(71). Using the notions
of lub and glb between security types, we extend function I’ to arbitrary sets of
properties in the two following ways:

°1 (+.P) = ({6 |[pe PAT (7,p) = (
°y (7, P) = (o | p € PAP (+.0) = (

N}, Y{# | pe PAT (7,p) = (0,7)})
7.—/)}’ 1{7.'/ | pe PAT (%,p) — (0.7 7"/)})

While P4 is used for the typing of property look-ups, in expressions, and method
calls (which are covariant with the type of the corresponding property), | is
used for the typing of property assignments and property deletions (which are
contravariant with the type of the corresponding property).

In the following, we give a brief description of the rules that better illustrate
the information flows specific to Core JavaScript and refer to [22] for a compre-
hensive presentation of a classical TS for IFC. In the Rule [PROPERTY AsSSIGN-
MENT], the raw type of the property that is being assigned (|7]) must coincide
with the raw type of the expression to which it is being assigned (|72 ). The con-
straint lev(7) C lev(72) prevents the explicit flow resulting from the assignment
of a high value to a low property, whereas the constraint lev(7y) Ulev(r) C o

o,
7,



prevents the so-called implicit flows — one cannot create a property with a low ex-
istence level depending on high values. Moreover, one cannot update a property
associated with a low value depending on high values. However, the former con-
straint subsumes the latter. In the Rule [PRoPERTY DELETION]|, the security level
that annotates the type of the object whose property is being deleted (lev(7))
must be lower than or equal to the existence level of that property (¢’). The
reason is that one cannot delete a visible property depending on secret informa-
tion. In both rules, the existence level of the property being assigned/deleted
is included in the writing effect of the respective expression in order to prevent
the creation/deletion of visible properties in invisible contexts. Finally, the Rule
[METHOD CaLL] checks whether the types of the object (7p) and the argument
(72) match the types of the keyword this (7)) and the formal parameter (77)
of the method being invoked. The constraint ¢’ C & prevents the calling of a
method that creates/updates low memory depending on high values. The sound-
ness of the proposed TS is established in Theorem 1.

Theorem 1 (Noninterference). For any expression e and typing environment
I such that I' - e : 1,0, it holds that e is noninterferent w.r.t. I".

4 A Hybrid Approach for IFC in Core JavaScript

The precision of the purely static T'S heavily depends on the precision of look-up
annotations. For instance, a property look-up is typable only if all properties in
the corresponding look-up annotation are associated with the same raw type.
In this section, we modify this T'S so as to make its precision independent of
the precision of look-up annotations. The key insight is that, since our goal
is to verify termination insensitive noninterference, we can defer failure to
execution time. Hence, instead of rejecting a program based on imprecise look-up
annotations, the hybrid TS infers a set of assertions under which a program can
be securely accepted and instruments it so as to dynamically check whether these
assertions hold. The instrumented version diverges if the assertions on which the
original version was conditionally accepted fail to hold at runtime.

In order to be able to reason about intermediate states of the execution, the
TS makes use of an indexed set of variables Vrg. These variables are used for
bookkeeping the values of intermediate expressions and are not available for the
programmer. Since one can easily instrument a program so that it diverges when
trying to read/write reserved variables, we can assume that program variables
do not overlap with those in Vprg. The runtime assertions generated by the TS
are described by the following grammar:

wi=HeV]|iveV |tt|wVw|wAw| —w

where Z; is the i-th variable of Vg and V' an arbitrary set of primitive values.
We consider two types of elementary assertions. An elementary assertion v € V
holds if the value v is contained in V. An elementary assertion ; € V holds in
a memory u in the scope-chain starting from r, written u,r F &; € V, if z; is



bound to a value in V in that scope.? The remaining assertions are interpretated
as in classical propositional logic.

In this section, we use as a running example the program x[y] = u[v] + z, to
be typed using the following typing environment:

I'(x)
I(u)

pr.(pl - prME  pL o priME KL pRIME) D
pr gt prmE g priME KL prIMT) L

I'(z) = I'(y) = I'(v) = prmE

«
;

This program is not typable using the static TS, because the left-hand side
expression is typed with priML (since the TS uses P, to determine its type),
while the right-hand side expression is typed with priM (since the TS uses r'¢
to determine its type).* However, since the look-up annotations of this program
are very imprecise, it can be the case that the potential illegal flows, which cause
the static TS to reject it, never actually happen. Hence, instead of assigning a
single security type and a single writing effect to each expression, the hybrid TS
assigns it a set T of possible security types and a set L of possible writing effects.
Each type 7 in T" and each security level ¢ in L is paired up with an assertion
w that describes “when” the expression is correctly typed by 7 or has writing
effect 0. For instance, the look-up expressions x[y] and u[v] are respectively typed
with Ty = {(PRIMT,2; € {po}), (PRM", &5 € {p1}), (PRIM", =(Z; € {po,p1}))}
and Tu[v] = {(PRIMLa ‘%j € {(h})’ (PRIMHvi'j € {QO})a (PRlMHa _'(:%j € {q07 Q1}))},
where #; and Z; are the variables of the T'S that hold the values to which y and
v evaluate in that context.

It is therefore useful to define a function 7 that expects as input an object
type 7, a set P of properties to inspect, and an expression e that evaluates to
the actual property being inspected® and generates a set of triples of the form
(0,7',w). Each of these triples consists of a security level o, a security type 7/,
and the assertion w that must hold so that the actual property being looked-up
has existence level o and security type 7. Formally, letting LT™"* = {(0,7/, (e €
{p}) | p € Pndom(7) AT (,p) = (0,7)}, P* is defined as follows:

P (+,Pre) = LT?Pe if P C dom(7)
T T LT P U{ (04, v, —(e € dom(7) N P))} if P € dom(7)

We extend P’ to sets of object security types paired up with runtime assertions
in the following way: I'* (T, P,e) = {(o, 7 ,w AWw') | (F,w) €T A (0,7 ,w') €’
(7, P,e)}. Given a set LT of triples of the form (o, 7,w), we denote by miey (LT)
(meype (LT'), resp.) the set of pairs obtained from LT by removing from each triple
the security type (the security level, resp.). Observe that meype (I”? (7, Str, ii)) =
Tx[y] and Tiype (F}? (Tu, Str, :ﬁj)) = Tu[v]~

Since an expression is typed with a set of security types and a set of writing
effects (instead of a single type and a single writing effect), the constraints as

3 Formally, (i1, 7,4:) Rscope ' and p(r')(#;) € P.
4 Recall that the implicit look-up annotation is Str.
5 Observe that e must either be a variable of the TS or a primitive value.



well as the lub’s and glb’s operations of the old TS must be rewritten in order to
account for this change. For instance, in the current running example, the hybrid
TS types u[v] with Ty, and z with T, = {(priIMY, tt)}. Therefore, in order to
type u|v] + z, the T'S needs to combine two sets of security types paired up with
runtime assertions. To this end, we make use of a function @y, parameterized
with a generic binary function U, that given two sets of elements paired up
with runtime assertions, Sy and Sy, generates a new set Sy By S1. If (s,w) €
So @y S1, then there are two pairs (sg,wp) € So and (s1,w;) € St such that
for every memory p and reference r: pu,r F w < p,r F (wo Awi) A s =
50 U s1. Concretely, Ty[y) @ Tz = Ty[y). However, if we let T, = (PrMT tt)},
Tup) ®y T, = {(PrIMT  £t)}.

In the rules that feature constraints, the hybrid TS tries to infer a dynamic
assertion under which the corresponding expression is legal. For instance, when
trying to type x[y] = ul[v] + z, the hybrid TS tries to infer an assertion that is
verified only if the level of the property that is being assigned is higher than or
equal to the level of the left-hand side expression. Thus, we assume the existence
of a function When?@, parameterized with a generic order relation €, that given
two sets of elements paired up with runtime assertions, .Sy and S7, generates an
assertion w = When?@ (So, S1). The generated assertion describes the conditions
under which there are two pairs (so,wp) € Sp and (s1,w1) € Sq such that sg € s1
and wy A wy holds. Formally, if w = WhenX (Sp, S1), then:

VM,TE(So,wo)ESQ,(Sl,wl)esl /’L’ r ': W = ua/r ’: (WO A wl) A S0 S S1

For instance, in the current example: When” (Ty(,), Tup)) = (& € {po})||(2; €
{@1})- If &; € {po} then the property being assigned is high and the assignment
is legal. If Z; € {q1}, then the value that is being assigned is low and, again, the
assignment is legal.

The hybrid TS rewrites the program to be typed in order to dynamically
check the assertions on which it is conditionally accepted. To this end, every
conditionally typed expression is wrapped in a conditional expression that checks
whether the assertion under which it was accepted holds. In order to simplify the
specification, we make use of a syntactic function wrap that given an assertion
w and an expression e generates the expression w ? (e) : (_diverge()), where
_diverge() is a runtime function that always diverges. For instance, the program
used as the running example is rewritten as follows: _x_i =y, _x_j = v, (_x_i
=="p_0" || _x_j == "q_1")? (x[y] = u[v]): (_diverge()).

In Figure 6, we present the hybrid TS for the imperative fragment of Core
JavaScript. Typing judgements have the form: I' F e ~» €'/e” : T, L, where
(1) I' is the typing environment, (2) e the expression to be typed, (3) €’ a
new expression semantically equivalent to e except for the executions that are
considered illegal, (4) e” an expression that bookkeeps the value to which e’
evaluates, (5) T a set of security types paired up with runtime assertions, and (6)
L a set of security levels paired up with runtime assertions. In the specification
of the hybrid TS, we make use of a new function lev that given a set T of security
types paired up with runtime assertions produces the set {(o,w) | (77,w) € T'}.



VAL THIs VAR BiNARY OPERATION

T = {(PRIM™", tt)} T = {(I'(this), tt)} {( (z),tt)} Vicoa - Ik ei~ eifel : Ty, L
L={(T,tt)} L={(T,tt)} e = &; = this ={(T,tt)} e =eh, e, 2; =ey op el iy

I''tv~uv/v:T,L I'F this® ~ e/ : T, L ez Wxi:$/xi~T7L I'teqop’ er ~ € /ij: To ®v Th, Lo ®n L

PropPERTY LOOK-UP
OBJECT LITERAL VARIABLE ASSIGNMENT _ ) Ly T _
P o) L (Toee)} Them e/ iDL I = {Geo(P@), ey Yomoa DE e clfel sTule L=Lo@n Ly
e =2 ={} L"=Lon L' WhenX(T,{(I'(z),tt)}) = w T = Teype (P' (To,P,el)) e = ep,eh, & = egleq]

{7 e /i T, L I'Fz=e~ ¢, wrapw,z=¢")/e" :T,L" 't egler, P~ € /iy Thev(To)®uten(Tn) p,

PROPERTY ASSIGNMENT
Vico2 - I'F e~ eifei + Ti, Ly LT =r’ (To, P,1) L = mey (LT) T = Teype (LT)
When; (lev(To) ® lev(Th), L) = wo Whenl (T2, T) = w1 W' =V{W" A (& € dom(7)) | 37 - (T,w") € To}

I'teolel, } = ea ~ €)1, e, & = e ,wrap(wo Awi Aw',eglef] = eb)/es : Ta, Lo ®n L1 ®n L2 ®n L
IN EXPRESSION PROPERTY DELETION
Vi:(),l ~FFei«~>e§/eg' 2T¢7Li LP = Tlev |_)? (T07P76{),)) F}—eo weg/eg ZT(),L() L:ﬂ'lev (l_)? (To,{p},@é’))
T = {(PRIM™, tt) } L rOutev(To)@ulen(Ty) When(-(lev(To), L) = w e = ey, wrap(w, 2; = delete eg.p)

Tk egint e~ ep, ey, @ =i, @ =ef inef/2;: T, Lo ®n L1 I+ delete’ eg.p ~ € /& : {(PRIM*, tt)}, Lo &n L

CONDITIONAL EXPRESSION )
Vico12-T'Fei~ejfef : Ty, L Whent (lev(Tp), L1 ©n L2) = w SEQUENCE
e = eg,wrap(wmg ? (6’1752']‘ = 6/1/) : (eé,ij = eg)) wee = (e € Vr) wss = (eg € Vr) Vizo,1 -1 F e~ e;/egl 2T, Ly
T'Feo? (e1): (e2) ~ € /i TP UTY™, Lo ®n (L™ U Ly™) Tl eg,e1 ~ ey, ey/ef : Ti, Lo @n L1

Fig. 6. Hybrid Typing Secure Information Flow in Core JavaScript

Furthermore, given a set L of security levels paired up with runtime assertions,
we use T for the set {(7/,w) | (F,w;) €T A (0,w;) € L Aw = wiAwy AT =7}
Finally, we use T% for the set {(7,w Aw') | (7,w’) € T} and Vp for the set of
falsy values: {false,0,undefined, null}.

In order to illustrate the difference in functioning between the static and the
hybrid TSs, let us consider the Rule [PrRoPERTY AssiGNMENT]. In the typing of
a property assignment, all of the three subexpressions eg, €1, and e are typed
with three sets of possible types Ty, 11, and T3 and three sets of possible writing
effects Ly, L1, and Lo. The runtime assertion wg guarantees that the existence
level of the actual property being assigned is higher than or equal to the levels of
the resources on which the computation of ¢y and e; depends (thereby avoiding
implicit flows), while w; guarantees that its security level is higher than or equal
to the level of the value that is assigned to it (thereby avoiding explicit flows).
Finally, the constraint w’ ensures that if the type of the receiver object does not
include the *, then the property that is being assigned is in its domain. The
instrumentation wraps the property assignment in a conditional expression that
checks whether all of the three conditions hold.

The soundness of the hybrid TS is established by Theorems 2 and 3. The
former states that the semantics of the instrumented program is contained in
the semantics of the original one, while the latter states that the instrumented
program is noninterferent. In the following, we use p ~ p’ whenever p and p/
coincide in all variables/properties available for the programmer and p does not
define mappings for variables /properties in Vrg.°

5 We give the formal definition in Appendix B.



Theorem 2 (Transparency). For any expression e, typing environment I,

memory p well-labeled by X, and reference v such that I' b e ~ ¢'/e” : T, L,

and r = (u, X, e" L, X, v), it holds that r = {u, X, e) | (ur, X¢,v), where
Iz Hgr < f H Hfy=f

pp =~ .

Theorem 3 (Noninterference). For any expression e and typing environment
I'if’'Fe~eé,e” T, L, then €' is noninterferent w.r.t. I

Theorem 4 characterizes the precision of the hybrid TS. It shows that, given
two expressions € and e that only differ in look-up annotations, whenever é is
typable using the purely static T'S and it converges, then e is typable using the
hybrid TS and its instrumentation also converges. Hence, the theorem shows
that the changing of look-up annotations of an expression é, typable using the
purely static TS, always yields an expression e, typable using the hybrid TS,
whose evaluation never diverges due to the failure of runtime assertions.

Theorem 4 (Precision). For any two expressions é and e, typing environment
I', and memory p well-labeled by X' such that: € = e, I' - € : 7,0 and #glob -
(e, Xe) I (g, Xy, v); it holds that: I' e ~» €' " : T, L and #glob - (u, X, e) |

</~L/f, Ef7v>'

5 Related Work and Conclusions

Since the seminal work of Volpano et al [27] on typing secure information flow
in a simple imperative language, TSs for IFC have been proposed for a wide
variety of languages, ranging from functional [20] to Java-like object-oriented
languages [7]. To the best of our knowledge, our TS is the first one that addresses
the particular features of JavaScript in the context of IFC.

The increasing popularity of dynamic languages has motivated further re-
search on runtime mechanisms for IFC, such as information flow monitors. In
contrast to purely dynamic monitors [4-6] that do not rely on any kind of static
analysis, hybrid monitors [13,23,26], use static analysis to reason about the im-
plicit flows that arise due to untaken execution paths. Furthermore, some hybrid
monitors also use static analyses to boost performance. For instance, Moore et
al [18] show how to combine monitoring and static analysis so as to reduce the
number of variables whose levels are tracked at runtime. Interestingly, Russo et
al [21] prove that hybrid monitors are more permissive than both purely dynamic
and purely static enforcement mechanisms. Their result supports the need for
mechanisms which combine static and dynamic analysis like our own. However,
unlike hybrid monitors, the hybrid TS we propose does not require any kind of
runtime tracking of security levels, since the inlined conditions feature the actual
values that are computed by the program rather than their levels.

Recently, gradual security typing [9,11] has been proposed as a way to com-
bine runtime monitoring and static analysis in order to cater for controlled forms
of polymorphism. Concretely, the programmer is expected to introduce runtime
casts in points where values of a pre-determined security type are expected.



“The type system statically guarantees adherence to the [security] policies on
the static side of a cast, whereas the runtime system checks the policies on the
dynamic side” [11]. This approach could be used for the typing of arbitrary prop-
erty look-ups. However, this would necessarily imply partial tracking of security
levels, which our solution does not require.

Due to the complexity of JavaScript semantics, most mechanisms for pre-
venting security violations spawned by client-side JavaScript code have focused
on isolation properties [8,10,16,19], which are easier to enforce than noninter-
ference [12]. The analyses presented in [16] and [19] deal in different ways with
the issue of property look-ups featuring arbitrary expressions. While the authors
of [16] consider a subset of the language that does not include this kind of look-
up expression, the TS presented in [19] overapproximates the set of properties
to which these arbitrary expressions may evaluate. We believe that the idea il-
lustrated by the hybrid TS could be applied both to [16] and [19] in order to
increase their permissiveness.

Hedin et al [14] have been the first to propose an information flow monitor
for a realistic core of JavaScript. They introduce the notion of existence levels
to deal with the constructs for the checking of the existence of properties. They
further introduce the notion of structure security level (SSL), which corresponds
to an upper bound on the existence levels of the properties of an object. Hence, if
an object o has a low SSL, one can only change its structure” in low contexts. It is
important to emphasize that the SSL is not a key element for the characterization
of the attacker model inherent to JavaScript, but rather a device of the authors’
enforcement mechanism. The need for the SSL arises from the fact that existence
levels are not established a priori. Hence, the SSL plays the role of the existence
level of the properties that do not exist yet.

Thiemann [25] has proposed a TS that guarantees termination and progress
for a fragment of JavaScript, which does not account for objects whose domain
may change at runtime. To overcome this issue, Anderson et al [3] have proposed
a type inference algorithm that allows objects “to evolve in a controlled manner”
by classifying their properties as definite or potential. This additional information
could be used by the static TS to distinguish property creations from property
updates, thereby relaxing the constraints imposed on property updates, which
would not need to take into account the existence level of the updated property.

In summary, we have presented a new TS for enforcing secure information
flow in a core of JavaScript that takes into account the defining features of
the language: prototypical inheritance, constructs for checking the existence of
properties, extensible objects, and unusual interactions between the binding of
variables and the binding of properties. In order to boost its permissiveness, we
have designed a hybrid version of the proposed TS that explores a novel way of
combining static and dynamic analysis in the context of information flow control.
A prototype of the TS as well as a long version of the paper that includes the
proofs of the theorems are available online [1].

7 Either by adding properties to o or removing properties from o.
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A Formal Semantics of Core JavaScript

The semantics of Core JavaScript is given in Figure 7. It makes use of three
semantic relations Rgcope; RProto, and RyewScope, respectively given in Defini-
tions 3, 4, and 6. It further uses a function fresh, given in Definition 5, which
corresponds to the parametric object allocator.

Notation. We use the notation: (1) [po — vo,: -+ ,pn = vy] for the partial
function that maps pg to vg, ..., and p,, to v, resp., (2) f[po > vo, - ,Pn > VUn)
for the function that coincides with f everywhere except in py, ..., pn, which
are otherwise mapped to vy, ..., v, resp., (3) f|p for the restriction of f to P
(provided it is included in its domain), and (4) f(r)(p) for (f(r))(p), that is, the
application of the image of r by f (which is assumed to be a function) to p.

Definition 3 (Scope-Chain Inspection — Rgcope). The relation Rseope iS
recursively defined as follows:

Look-up
NuLL Base x & dom(u(r)) )
(1, null, ) Rseope null z € dom(u(r)) {u, u(r, @scope), *) Rscope T
7 7 Y <,u‘7T7 .'.E> RScope T </”L’ T, x) RSCOPE 7”/

Definition 4 (Prototype-Chain Inspection — R p,ot0). The relation R proto
1s recursively defined as follows:

Look-upr
NULL BASE m & dom(u(r)) /
(s rll, m) Ropporo it - domn(r) {1 plr)(_proto_),m) Rproto
7 7 (/-/'7 T, ’ITL) Rproto T <,LL, T, m> R pProto 7’l

Definition 5 (Parametric Allocator). A parametric allocator fresh is a
function that maps triples of the form (u,X,c) where p is a memory, X a
labeling, and o a security level to a free reference in p and which verifies the
following property: uo %= p1 [¥1°= fresh(uo, Xo,0) = fresh(u, X1,0).

Definition 6 (Scope Creation — RyewScope). For any two memories p and
W', labeling X, three references rg, Tinis, and r, value v, and expression e: (u, X,

T§, U, Tthis) RNewScope (I €, 7) holds if and only if \*Dz. {var™ " gy ... y.: e}
= u(ry)(@code), r' = u(ry)(@fscope), r = fresh(u, X, T), and:
W= wlr — [@scope — @ v, Qthis — Tnis, Y1 — undefined, - -, yn — unde fined]]

for some variables x,y1,- - ,Yn-

B Auxiliary Definitions Used in the Proofs

In this section we present several definitions that are either referred to in the
paper or required for the proofs.

Admissible Prototypes. Not all types can be used as the type of the prototype
for the objects of a given type. Consider, for instance, an object oy of type
70 = pk.(p” : pRIME, proto_ Y : ) and an object 01 of type 71 = ur.(p" : pr. (x5



VARIABLE

VALUE THIs
. . <,u7 T, -T> RScope Tx T 75 null v = M(Tx)(x)
= p, 2s0) (e, 2, v) 7 (p, X this) 4 (u, X, p(r) (Qthis))
r(p, Xx) §(p, Xov)
BINARY OPERATION IN EXPRESSION
r = {u, X, e0) U (uo, Xo, vo) r (X eo) U (uo, Xo,mo) 71 (o, Zo,er) I {ur, X1, 1)
r (o, Yo, e1) ¥ (p1, X1, v1) (1,71, m0) Rproto T’ r’ # null = v = £f v =null = v=rtt
H <:u/7 27 €o Op 61> ll <M1,217U0 op Ul) rk <M7Ea€0 in 61) U’ </j,1,21,’l}>
PrRoOPERTY LOOK-UP
VARIABLE ASSIGNMENT = {p, X, eo0) I (1o, Xo,70) r = (o, Z50,60) U (pa, X1, ma)
T </1'7 E: €> U’ <M07 207 7}0> <//507 r, -T> RScope Tx <,U17 To, m1> RProto 7"
re # null W= o [re + po(rz) [x = vo]] r' # null = v = p1(r')(mi) r’ = null = v = undefined
= (u, Xz =e) § (', Xo,vo) r k(X eolen]) ¥ (pa, X1, v)
PROPERTY ASSIGNMENT PROPERTY DELETION
rE(p, X eo) ¥ (po, Xo,m0) 1 F (po, Zos er) I (1, X1, ma) r = {u, X, e0) ¥ (1o, Xo,70)
r(pn, 21, e) U (po, Yo, v2) ' = o [ro = pa(ro) [ma > sl 1= po [ro = 110(70)|dom (i (ro)—p) )
rH (X, eoler] = e2) U (1, Do, va) T (u, X, delete eo.p) | (i', Xo, tt)

FuncTiON LITERAL

v’ = fresh(u, X, lev(7)) Y =37

OBJECT LITERAL
r’ = fresh(p, X, lev(X(1)))

= S [ 7]

wo=p [7" — [@fscope — 7, Qcode — A g, {varﬁ"“ n Yl Yn; e}“ iy {T/ — [ proto_ — null]]
7+ (u, X, function” ™" () {var™ Ty ey ed) (i, X r) P, 2070 4, 2 )
FunctioN CALL CONDITIONAL EXPRESSION
T|_<U72760>U’<,u072077’0> 7“}_<,U,0,20,61>U«</j,1,21,1]1> r|_</"’a2aé>il’<ﬂvzv{)>
</141,T'07'U17 #glOb> RNewScope <,u, /f'> ) ¢ VF =1 :AO v E VF =1i1=1
TF(/%Elu >ll<” E U> TF<ﬂ7276i>‘u<;u/72,7U>
Tk <,U'7 27 60(61» ll <,U'/7 E/7U> T </1’7 Ezé ? (60) : (61)> ll <M/7 Elvv>
METHOD CALL
rF (u, 2, eo0) 4 (po, Xo, r0) T+ {po, Xo, e1) ¥ {p1, X1, ma1) SEQUENCE
rE(pa, X1, e2) U (pe, Yo, v2) (t2,70,M1) RpProto Tm s = H?( m) (M) r = {u, X, e0) 4 (1o, Xo, vo)
(2,75, v2,70) RNewscope (fi, &,7)  FH (1, Xa,8) | (', X', v) 7 (uo, Yo, e1) ¥ (p1, X, v1)
(X, eoler](e2)) U (1, X', v) (w2, eo,e1) U (1, 1, v1)

Fig. 7. A Big-Step Semantics for Core JavaScript

priM™) L), Suppose we set 71 as the type of the prototype in 79. Then, the look-up
of p in 0y may yield two different types of values (besides undefined, if neither
0p nor o; defines p). It yields a value of type PRIMY when object oy defines p and
an object of type uk.(x" : prm®)” when oy does not define p and o; defines p.
In order to overcome this problem, we restrict what types can be legally used
for the prototype of a given object type. Informally, 7, is a consistent prototype
type for 7y if 71 does not define a default type and it coincides with 7y for all
properties in its domain.

Scope-Chains. In order to simplify the proofs, we assume that parsed function
literals in memory are annotated with typing environment in which the corre-
sponding function literals were typed. It is important to emphasize that this is



just a device for the proofs and not a feature of the enforcement mechanism.
Concretely, the implementation does not need to associate with every parsed
function literal the corresponding typing environment. We define a scope-chain
as triple (u,r,I") consisting of a memory, a reference to a scope object, and
the typing environment associated with the variables defined in that scope. The
function SChain receives a memory and reference to a function object and out-
puts the corresponding scope-chain. Concretely, SChain(u,r) = (u, 7', ") iff
" = u(r)(@fscope) and I' = tenv(u(r)(@code), where tenv(f) corresponds to
the typing environment that annotates f. Definition 7 establishes the notion of
low-projection for scope chains.

Definition 7 (Low-Projection for Scope-Chains). The low-projection of
the scope-chain (u,r,I") at security level o is defined as follows:

(7, ) 17= {(z, pu(rz)(x)) | & € dom(I") alev(I'(x))co A (7, ) RScope Tz A To 7 null}

Well-labeled Memories. The definition of noninterference requires that the
original memories to be well-labeled. This means that types declared in the typing
environment must “match” their corresponding values. Definition 8 establishes
the notion of well-labeled scope-chain, whereas Definition 9 gives the notion of
well-labeled memory. In the following we make use of the notion of extended
labeling. Given a labeling X : Ref — T, we define its extension X* : Ref U
Prim — T as follows: X*(v) = X (v) if v € Ref and X*(v) = prIMT if v € Prim.

Definition 8 (Well-labeled Scope-Chain). The scope-chain (u,r’, I") is well-
labeled by well-labeled by X if for every variable x € dom(I") for which there
is a reference r' such that (u,r,x) Rgcope r' and r' # null, it follows that:

I(x) 2 Z*(u(ra)(x)).

Definition 9 (Well-labeled Memory). A memory u is well-labeled by X, if:
(1) every reference pointing to a non-scope object in i is in the domain of X, (2)
every funtion object in p is mapped to a function type T by X, which correctly
types the corresponding function in its annotated environment, and the corre-
sponding scope-chain is well-labeled X, and (3) all references to non-internal
objects in dom(u) are in dom(X), and for every reference r € dom(X) and

property p € dom(u(r)) X(u(r)(p)) 27 (X(r),p).

Instrumentation. Definition 10 formalizes the similarity relation between the
memory of an instrumented program and the memory of its original version. We
use the notation @dom for the domain of an object including internal properties.

Definition 10 (Memory Similarity). Two memories p and y' are said to
be similar, written p ~ ', if: (1) the domains coincide — dom(p) = dom(p'),
(2) for every reference r € dom(p) and property p € Qdom(u(r)), p(r)(p) =
w(r)(p) and p & Vrg, and (3) for every reference r € dom(u') and property
p € dom(y (r)\dom(u(r)), p € Vrs.



C Proof for the Static Type System

Lemma 1 (Well-Labeled Prototype Chains). Given a memory p well-
labeled (hyp.1) by X, a reference r, and property p, such that {u,7,p) Rproto T
(hyp.2), then T (X(r),p) =T (X(r'),p), whenever " (X(r'),p) is defined.

Proof. Suppose that " (X(r'),p) = (o,7) (hyp.3). We need to show that: F (X(r),p) =
(o,7). We proceed by induction on the derivation of (i, r,p) Rproto 1’

[Basg]| p € dom(u(r)) (hyp.4). We conclude that:

—r=7 (1) - hyp.2 + hyp.4
P (20),p) = (0,7) (2) - byp.3 + (1)
[Look-up] p & dom(u(r)) (hyp.3). We conclude that:

— {u, 7", D) Rproto 7’ and u(r)(_proto_) =r". (1) - hyp.2 + hyp.4
- P (X0"),p) =1 (X('),p) (2) -hyp.1 + (1) + ih
= X(r") 2 moype (7 (X(r), _proto_)) (3) - hyp.1 + (1)
= |meype (7 (X(r), _proto_))| = | (7‘ )] (4) - (3)
= T (mregpe (P (X(r), _proto_)),p) = T (2(r"),p) (5) - (4)
= (X(r),p) = T (meype (T (X(r), _proto_)),p) (6) - Consistent Prototype
- r(X(r),p) = (0, 7) (7) - hyp.3 + (2) + (5) + (6)

d

Lemma 2 (Prototype-Chain Indistinguishability). For any two memories
o and py respectively well-labeled by Xy and Xy, reference v, and property p such

that <N0arap> RPproto To (hyp1)7 <,LL17T7p> Rproto T1 (hyp?/)z ,u0720 ~o ,Llfl;El
(hyp.3), and Ty (T (Xo(r),p)) Ulev(Xo(r)) T o (hyp.4), it holds that: ro = 11.

Proof. We proceed by induction on the derivation of hyp.1.
[Nurr] r = null (hyp.5). We conclude that:

— rg =11 = null (1) - hypl =+ hyp2 + hyp5

[Basg| p € dom(po(r)) (hyp.5). We conclude that:

—ro=r (1) - hyp.1 + hyp.5
— Xo(r) = X1(r) (2) - hyp.3 + hyp.4
= Mev (M (XZ0(r),p)) = Mev (7 (Z1(7),p)) E 0 (3) - hyp.4 + (2)
— p € dom(pi(r)) (4) - hyp.3 + hyp.5 + (3)
—rn=r (5) - hyp.2 + (4)
—ro=r (6) - (1) + (5)

[Loox-up| p & dom(po(r)) (hyp-5) and (uo, 70, p) Rproto To (hyp.6) where rg =
wo(r)(_proto_) (hyp.7). We conclude that:

— Xo(r) = Xi(r) and lev(Xo(r)) = lev(XZ1(r)) C o (1) - hyp.3 + hyp.4
= mev (7 (Z0(r), p)) = mev (7 (Z1(r),p)) E0 (2) - hyp4 + (1)
— p & dom(pa(r)) (3) - hyp.3 + hyp.5 + (1) + (2)
= (u1,71,p) Rproto 1, Where 71 = 1 (r)(_proto_) (4) - hyp.2 + (3)



— Type (7 (Zi(r), _proto_)) = Xi(r) for i = 0,1
5) - hyp.7 + (4) + Syntaz of Object Types + Well-labeled Memory
— lev(meype (7 (Xi(r), _proto_))) E lev(X;(r)) C o, for i = 0,1 (6) - (1) + (5)
—ro=r] (7) - hyp.3 + hyp.7 + (1) + (6)
— X2i(r{) =X magpe (T (Xs(r), _proto_)), for i =0,1
(8) - hyp.7 + (5) + Well-labeled Memory

— Xi(r;) 2 Xi(r), fort = 0,1 (9) - (5) + (9)
— lev(Zi(r})) E lev(Xi(r)) C o and | Xi(ri)| = | Xi(r)], for i = 0,1 (10) - (1) + (9)
= Tiev (7 (Zo(r0), p)) Ulev(Xo(ro)) C o (11) - hyp.4 + (10)
—To=T1 (12) - hyp.3 + hyp.4 +hyp.6 + (4) + (7) + (11) + ih

(]

Lemma 3 (Indistinguishable Variable Assignment). For any two memo-
ries po and p1, typing environment I', reference r, security level o, variable x,
and values vg and v1 such that:

— I'r Ik po ~o p1 (hyp.1),

— {10, 7, T) Rscope To (hyp.2) for some reference ro, uo = po [ro — po(ro) [T — vo]]
(hyp.3),

— (1,7, 7)Y Rscope ™1 (hyp.4) for some reference r1, p) = pi1[r1 — pi(r1) [z — v1]]
(hyp.5),

— lev(I'(z)) C o = vo = v1 (hyp.6)

It holds that: I'yr Ik pjy ~q .

Lemma 4 (Indistinguishable Property Assignment). For any two mem-
ories pg and py respectively labeled by Xy and X, reference r, string p, security
level o, and values vg and v such that:

— o, Yo ~o p1, 21 (hyp.1),

— o = o [r = po(r) [p = vol] (hyp.2),

— ph = [r = pa(r) [p—= ] (hyp.3),

lev(Zo(r)) Ulev(meype (7 (X0(r),p))) E 0 = vo = v1 (hyp.4)

It holds that: ply, So ~q i, 21

Lemma 5 (Indistinguishable Scope-Object Allocation). For any two mem-
ories (o and p1 respectively labeled by Xo and Xy, references vy, v, and 1 (where
rf points to a function object), values vy and vi, and security level o such that:

= o, Xo ~o p1, X1 (hyp.1),

— (po,7¢,v0,70) RNewSecope (110, €0, 70) (hyp-2),

- <M17Tf7 Ul,’f’1> RNewScope <M37é17f1>(hyp3);

= lev(Zo(ry)) C o (hyp.4),

— lev(Targ (Zo(r5))) C 0 = vo = v1 and lev(menis (Xo(ry))) E o = 1o =11 (hyp.5).

It holds that: ég = éy1, 7o = 71, and I', 7o IF pfy ~, p}, where:

— po(rs)(@code) = pa(r5)(@code) = X0 D g {var y1, - ,yn; €0} for some typ-
ing environment I’ and variables z, Yy s Yn,
= ﬁ this — T¢nas (E()(’r'f)) , & > Targ (Z()(T’f)) s
Y1 > Tyar (EO(Tf)7 1) st s Yn P Tyar (Zo(Tf)/fl)



Lemma 6 (Confinement). For any memory p, labeling X, reference r, ex-
pression e, typing environment I', and security level o such that: r F {u, X, e) |}
(', 2, vy, I'Fe: 7,6, and the scope-chain starting from the object pointed to
by r in p is well-labeled by I', for some security type T and security level &; it
holds that: p [ ==/ 1 and (,7) 15o= (u',r) 110,

Lemma 7 (Noninterference). Given two memories p and p' well-labeled by
X and X' resp., an expression e, a reference r, a typing environment I', and a
reference r such that: I' e : 7,6 (hyp.1), r = (n, X,e) I (usp, Xy, v) (hyp.2),
rE </1‘/7E/76> 3 <:U'/faz}vv/> (hyp‘?); Hy X~ M/vE/ (hyp4)7 and I'yr I- p o~
' (hyp.5); it holds that: (i) py, X ~o pily, X%, (i6) Iyr IF py ~o py, and (iii)
lev(f) Co=v="1.

Proof. We proceed by induction on the derivation of hyp.2.
[VAL] e = v for some value v (hyp.6). We conclude that:

— vy =vf=v (1) - hyp.2 + hyp.3 + hyp.6
— lev(7) C 0 = vy = v} (2) - (1)
— oy =,y =g, Ny =5, 52 =3 (3) - hyp.2 + hyp.3 + hyp.6
= pp Zp o Wy X (4) - hyp4 + (3)
— ek py ~o 1y (5) - hyp.5 + (3)
[THis| e = this (hyp.6). We conclude that:
— vy = p(r)(Qthis) and vy = p'(r)(Qthis) (1) - hyp.2 + hyp.3 + hyp.6
— lev(I'(this)) C o = vy = v} (2) - hyp.5 + (1)
— 7 = I'(this) (3) - hyp.1
— lev(7) C 0 = vy = v} 4)-(2)+ (3)
— pp=pu, iy =p, Uy =X, and X} = 3. (5) - hyp.2 + hyp.3 + hyp.6
= pp Zp o Wy, X (6) - hyp.4 + (5)
— Irlk g ~o i (7) - hyp.5 + (5)

[VARIABLE] e = z, for some variable x (hyp.6). We conclude that:
— vy = p(rz)(z) and (u,r, ) Rscope Tz for some reference r, (1) - hyp.2 + hyp.6
— vy = p'(ry)(x) and (', 7, &) Rscope 5 for some reference r;, (2) - hyp.3 + hyp.6

— lev(I'(z)) C o = vy = v} (3) - hyp.5 + (1) + (2)
- 7=1I(x) (4) - hyp.1 + hyp.6
— lev(7) E 0 = vy = v} B)-03)+ ©
— p=pp, p = ph, ¥ =3¢ and X' = X% (6) - hyp.2 + hyp.3 + hyp.6
= pup Bp o Wy, If (7) - hyp4 + (6)
— Irl- iy ~o i1 (8) - hyp.5 + (6)

[BINARY OPERATION] e = eg op e; for two exprs. eg and e1 (hyp.6). We conclude that:

-k {u, X e0) I (o, Xo,v0) and r b+ (po, Yo, e1) I {(uyr, Xy, v1) for some memory
1o, labeling Xy, and two values vo and v1 such that vy = vy op v1
(1) - hyp.2 + hyp.6
— (2 e0) I (o, Xo,vo) and r F (uo, X, €1) I (uf, X%, v1) for some memory
o, labeling X, and two values vy and vy such that v} = v1 op v}
(2) - hyp.3 + hyp.6
— I'Feop:70,00 and I' - ey : 71,01, where: 7 =179 Y 71 and 6 = oo [ 01
(3) - hyp.1 + hyp.6



- Mo, 20 ~o /-1'67 E[/)y F,T IF Ho ~o .U'67 le'U(7"0) E 0 = Vo = 1}(/)
(4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
= g, Xp o py, Xy, Tyr b g o iy, lev(7) E o = v = 0]

(5) -ih + (1) + (2) + (3) + (4)
—U07U6AU17Uiz>Uf:UIf () (1)+(2)
— lev(7) C o = (lev(o) C o) A (lev(f1) E o) (7 - (3)
— lev(?) Eo = vy = (8) - (4)-(7)

[VARIABLE ASSIGNMENT| e = z = eg for some variable e and expression eg (hyp.6).
We conclude that:

= rE (s Xseo) I (po, Xg, v), (o, 7, ) Rescope 7o and pug = pio [rz = po(rz) [& = vy]

for some memory g and reference 7. (1) - hyp.2 + hyp.6
=, 5 o) U (uo, X7, 0"), (k0,7 @) Rsecope T and py = pg [ = po () [z 0} ]]

for some memory pu(, and reference 7. (2) - hyp.3 + hyp.6
—I'kteo:7,00, 7 XI'(x), and 6 = o MNlev(I'(z)) (3) - hyp.1 + hyp.6

— 10, Zo ~o 6, Vo, Iy7 I pio ~o g, lev(7) E o = vy = v}

(4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
— pug, Xy o py, Xy (5)- (1) +(2) +4)
— lev(I ())EU:>lev()Ec7 (6) - (3)
— lev(I ())EU:M)f—’Uf (7) - (4) + (6)
—Irlkpp ~y uf (8)-(1)+(2) + (4) + (7) + Lemma ??

[OBJECT LiTERAL] € = {}7 (hyp.6). We conclude that:
-7 = fresh(,u, X, lev(T)), pf = pl[f— [ _proto_ — null]], ¥y = X[f— 7], and

vf = (1) - hyp.6
-7 = fresh(,u X lev(T)), py = p'[r' = [_proto_ — null]], X% = Z(]’)[r' — 7],
and v =7 2) - hyp.6
) (3) - hyp5 + (1) - (2)

We consider two cases: either lev(7) E o or lev(7) £ o. Suppose lev(7) C o (hyp.7):
— =7 (4) - hyp.4 + hyp.7 + (1) + (2)
— g 1500 =p 177 U{(#, D)} U{(F, _proto_,null), (#, proto )} (5) - hyp.7 + (1)
— M/f lef"’: w [2/"7 U{(#, 7))} U{(#, _proto_,null),(*, proto_)}
(6) - hyp.7 + (2) + (4)

—lev()EU:>’Uf—1}f (8)- (1) +(2) + (4)
Suppose lev(7) £ o (hyp 7):

— g [T0T=p 1 (9) - hyp.7 + (1)

— W 1ErT= e (10) - hyp.7 + (2)

= pufy Xp o Wy X% (11) - hyp.4 + (9) + (10)

— lev(7) C 0 = vy = v} (12) - hyp.7

[PROPERTY LOOK-UP| e = eg[e1, P] for two expressions eg and e1 (hyp.6). It follows:
—rF (2 e0) I {po, Xo, o) and r = {uo, Xo, e1) I (ug, Xy, m1) for some memory
1o, labeling Xy, reference o and #, and string m4 such that: {uyr, 70, m1) Rproto 7,
7 # null = vy = py(F)(m1), 7 = null = v = unde fined. (1) - hyp.2 + hyp.6
—rk(, 2 eo) U {uo, Xo,m0) and r = (up, Xg, e1) I (ur, X%, m7) for some memory
o, labeling Xy, reference ry and 7', and string my such that: (s, 70, mi) Reroto 7',
7 # null = v} = P (7)(mh), # = null = v = undefined. (2) - hyp.3 + hyp.6



.lev(7g)Ulev (1)

I'teg: 70,00, I'Fe1: 71,01, Pt (70, P) = (07, 71u), and 7 = 7,
(3) - hyp.1 + hyp.6
1o, X0 ~o 110, 20, Th7 IF po ~o 10, lev(fo) E 0 = ro = 1
(4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)

prs Xp o s, X, Tyl g o pily, lev(71) E 0 = my = my
(8)-ih + (1) + (2) + (3) + (4

It remains to prove that lev(7) C o = vy = v}. Assume that lev(7) C o (hyp.7). It
follows that:

lev(7o) Ulev(f1) Ulev(fiu) E o (6) - hyp.7 + (3)
ro =1y and m1 = m} (7) - (4)-(6)
mi=m) €P (8) - (1) + (2) + (7) + Correct Annotation
lev(moype (7 (70,m1))) E lev(meype (M1 (70, P))) = lev(iu) 9)-(3) +(®)
lev(mype( (70,m1))) Ulev(7o) E o (10) - (9)
X(ro) = X4(rp) = 7o (11) - (1) + (2) + (3) + Well-labeled Memory
lev(Xyf(ro)) = lev(Z‘f(r )) E lev(7o) (12) - (11)
LEf(TO)J = | Z%(ro)] = L70] (13) - (11)
* (fo,m1) =T (Xf(ro),ma) = (Z(r), m1) (14) - (13)
lev(meype (7 (g (ro),m1))) = lev(meype (7 (Z7(r5),m1))) Eo (15) - (10) + (14)
lev(meype (T (X5 (r0), m1))) ulev(Z‘f(ro)) Co (16) - (12) + (15)
7= and 7 # null = lev(X (7)) = lev(X% (7)) C o

lev(Xy (7
(17) - (1) + (2) + (5) + (16) + Proto-Chain Indistinguishability (Lemma ?7)

We consider two cases: 7 # null or # = null. Suppose 7 # null (hyp.8):

' # nall (18) - hyp.8 + (17)
JEo (19) - hyp.8 + (17)
#),m1) (20) - (1) + Well-Lab. Proto-Chains (Lemma ?7)
7 - (2) + Well-Lab. Proto-Chains (Lemma ?77)
) = lev(meype (7 (Z7(7),m1))) E o

(22) - (15) + (20) + (21)

vy =0} (23) - hyp.8 + (1) + (2) + (5) + (17) + (19) + (22)
Suppose 7 = null (hyp.8):

7 = null (24) - hyp.8 + (15)

vy = v} = undefined (25) - hyp.8 + (1) + (2) + (24)

[In

EXPRESSION| e = ¢g inf e; for two expressions eg and e, (hyp.6). It follows that:

rE (u, X, e0) ¥ {(uo, Yo, mo) and r b (o, Xo,e1) I (ur, X, r1) for some memory
1o, labeling Yo, a reference 71, and a string mo such that: (ur,ro,m0) Rproto 7,
7 #null = v==%f and 7 = null = v = tt (1) - hyp.2 + hyp.6
r{u, X e0) I (1o, Xo,mo) and 7 F (o, Xo,e1) ¥ (uy, Xy, r1) for some memory
o, labeling Xy, a reference 71, and a string mo such that: (s, 70, m0) Rproto 7,
T #null =v=1=%f and 7 = null = v = tt (2) - hyp.2 + hyp.6

I'Foeo: 70,00 and I' b e1 : 71,01, where: 7 = pRIMv(Fo)uiev(tume (T (71, P))

and 6 = o9 Moy (3) - hyp.1 + hyp.6
1o, X0 ~o o, 20, Iy IF o ~o g, lev(fo) E o = mo = my
(1)-1h | bypd + byp5 + (1) ¢ (2) 1 (3)
pps o py, Dy, Dol py ~oo iy, lev(f) Co = =1
(5)-ih + (1) + (2) + (3) + (4)



It remains to prove that lev(7) C o = v = v'. Assume that lev(7) C o (hyp.7). It
follows that:

lev(7o) Ulev(71) U ey (T4 (71, P)) E o (6) - hyp.7 + (3)
mo =myp and r1 = 7} (7) - (4)-(6)
mo =mgy € P (8) - (1) + (2) + (7) + Correct Annotation
Mev (I (T1,M0)) C ey (Pt (71, P)) E o (9) - (6) + (8)
Tev (7 (71,m0)) C o (10) - (6) + (9)
Dp(r) Y Xp(r1) 27 (11) - (1) - (3) + Well-labeled Memory
Yy(ri) = X5(r1) j 1 (12) - (5) + (6) + (11)
[ Xy (r1)] = [71] and lev(Xf(r1)) E lev(f1) (13) - (12)
Mev (7 (Xf(r1),mo)) = Tiev (7 (71,m0)) E 0 (14) - (10) + (13)
lev(Zp(r1)) Co (15) - (6) + (11)
Tiev (7 (X (71),m0)) Ulev(Zy(r1)) C o (16) - (14) + (15)
7= (A7) - (1) + (2) + (5) + (7) + (16)
v="1 (18) - (1) + (2) + (17) + Proto-Chain Indistinguishability (Lemma ?7)

[PROPERTY ASSIGNMENT]| e = egle1] = ez for three expressions eq, e1, and es (hyp.6).
We conclude that:

r <,LL,E,€0> ll <:U‘072077n0>7 rk <“07207€1> b <.U‘17217m1>7 Tk <:u1721762> ‘U
(2, X'¢,vy) for three memories po, 11, and pe, two labelings Xy and X1, a reference
ro, and a string m1 such that: gy = pso [ro — p2(ro) [m1 — vy]]
(1) - hyp.2 + hyp.6
rE <:U/,72,7€0> U’ <M67E(l)7r(l)>a r <M67E(l)7el> 2| <//17Zi>m/1>7 Tk <,U//1721,€2> U’
(ua, X%, v} for three memories p, py, and ps, two labelings 25 and X7, a reference
79, and a string m} such that: ps = pb [ro — ps(ry) [my — v}]]
(2) - hyp.3 + hyp.6
I+ ep - 7"0,0'(), I+ e : 7"1,0'1, and ' + €2 7"2,0'2 where: 7 = 7"2, ’7"2 j
Teype (T4 (70, P)), lev(7o) Ulev(71) E miev (7y (70, P)) (3) - hyp.1 + hyp.6
1oy X0 ~o 10, X0, Thr IF po ~o 1o, lev(fo) E 0 = ro = 1
(4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
p1, X1 ~o ph, X1, Tor b p ~e pih, lev(71) E o = my = m)
(5)-ih + (1) + (2) + 3) + (4)
pa, Xf ~vo pin, X%, )1 - g ~o p, lev(f2) E o = vp = 0%
(6) -ih + (1) + (2) + (3) + (5)

We distinguish two different cases, either lev(7o) Ulev(71) C o or lev(7o) Ulev(71) £ o.
Suppose lev(7o) Ulev(71) £ o (hyp.7), it follows that:

ro =1} and m; = m} (7) - hyp.7 + (4) + (5)
X¢(ro) Y X (ro) < r'o (8) - (1) - (3) + (7) + Well-labeled Memory
g(ro) = Zj(ro) < (9) - hyp.7 + (6) + (8)
[ Z¢(ro)] = [ X5 (r O)J [7o] (10) - (9)
lev(Xg(ro)) = leU(Z (ro)) CElev(ro) CE o (11) - hyp.7 + (9)
mi=m) €P (12) - (1) + (2) + (7) + Correct Annotation
Teype (71 (70, P)) = Teype (7 (70,m1)) (13) - (12)
Teype (7 (T0,M1)) = Teype (7 (X (10),m1)) (14) - (10)
T2 X Teype (7 (Xf(ro), m1)) (15) - (3) + (13) + (14)
lev(Zy(ro)) Ulev(meype (7 (X (ro), m1))) ECf:>l€v(*2) Co  (16) - (11) + (15)
lev(Z¢(ro)) Ulev(megpe (M (Z¢(r0),m1))) C 0 = vp = v} (17) - (6) + (16)
Wp, X ~g ,u},E} (18) - (1) + (2) + (6) + (17) + Lemma ?7

I'ri-pyp ~o u} (19) - (1) +(2) + (6)



Suppose lev(7o) Ulev(71) £ o (hyp.7), it follows that:

X(ro) Y X% (ro) = o (20) - (1) - (3) + Well-labeled Memory
[ X (ro)] = [ X4 (r0)] = [ 7o) (21) - (20)
{m1,m1} C P (22) - (1) + (2) + Correct Annotation
= v (") (70, P)) E miev (7 (70, m1)) '_'TFlev( (fo,m1)) (23) - (22)

— Tlev (|_> (7.-07 ml)) M T1ev (r) (TO,ml)

(24) - (3) + (23)

) Z
— pf, X ~o ,uf,Ef (25) - (1) + (2) + (6) + (24) + Inwvisible Property Assignment

Lot iy oo 12, (26) - (1) + (2) + (6)

[FuncTtioN CALL] e = eg(e1) for two expressions eg and e1(hyp.6). We conclude that:

r = (u, Y, e0) U (o, Xo,m0), 7 F (po, Xo,e1) U (p1, Xi,v1), 7 (@, 2h,€) U
(f, Xy, vy) for three mems. po, p1, and fi, two labs. Xy and X, two refs. 7o
and 7, a value vy, and an expr. é such that: (u1, 70, v1,#glob) RNewScope {ii,€,T)
(1) - hyp.2 + hyp.6
T+ <,u‘l72l360> U </L672(l]7r6>7 rE <:u‘l052(/)761> 4 <,LLI1,Z£,’U£>, e <:u’ El A/> 4
(), X%, v}) for three mems. ug, ph, and g, two labs. Xy and 27, two refs. ry and
7', a value v, and an expr. & such that: (u}, 70, v1, #9lob) RNewScope (f', € ,7')
(2) - hyp.2 + hyp.6
I'Feo: 0,00 and I'F ey : 71,01, where: 70 = (7.7 2 #5) | Fg1opa1 = 70, 71 < 7,
lev(7o) C &, and 7 = (7 )lev(ﬁﬁ (3) - hyp.1 + hyp.6
1o, X0 ~o 10, 20, b7 IF po ~o 10, lev(fo) E o = ro = 1
(4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
W1, X1 ~e i, X1, Do b g ~o i, lev(f1) E o = mi = mj
(5) -ih + (1) + (2) + (3) + (4)

We consider two cases: lev(7o) C o and lev(7o) £ o. Suppose lev(7o) C o (hyp.7). It
follows that:

To =10 (6) - hyp.7 + (4)
Xi(ro) Y 21(7‘0) j To (7) - (1) - (3) + (6) + Well-labeled Memory
L&(ro)J =X i(?‘o)J = [70] = (0.7 = 72) (9) - (8)
lev(X1(ro)) = lev(X1(ro)) C lev(to) E o (1 ) hyp.7 + (9)
w1 (ro)(@code) = ﬁ(ro)(@code) =\ 21(r°))m {vartvi o Tun gy ey 6}
Ml(TO)(@fSCOPG) 11 (ro)(@fscope) = i = i
F PlFp1 ~o il
e=¢
for some typing environment I and variables TyYl, s Yn
(1) - (5) + (9) + (10)
I'Fé: i, 6, where I' = I'[this — 70,2 > 71,41 > Tyys - > Yn > Ty
(12) - (11) + Well-labeled Memory
lev(75) C o = #glob = #glob (13) - tautology
lev(7]) Eo = lev(f1) C o (14) - (3)
lev(7) C o= v =] (15) - (5) + (14)
LRIk o i (16) - (1) + (2) + (5) + (10) + (13) + (15) + Indist. Scope Alloc
1. 51 ~o 1, 5 an - (1) + (@) + )
pps D o py, X, Lor I g ~og ply, lev(s) o = vy = )
(18.1) - ih + (1) + (2) + (12) + (17)
lev(7) Co = lev(7y) Co (18.2) - (3)
lev(7) C o = vf =0} (18.3) - (18.1) + (18.2)



Suppose lev(70) Z o (hyp.7). It follows that:

cllo (19) - hyp.7 + (3)
Xi(ro) Y Xi(rg) X 7o (20) - (1) - (3) + Well-labeled Memory
[S4(r0)] = [Z4()) = [o) = (RH 5 #) (22) - (21)

p1(r0)(@code) = N»F10)) g LyvarfvnFun gy ooy 0 e}

(o) Sfcope) =7

I'Fé:7

r= ]Aj[th|5b—>7'0,axv—>7'17ylb—>7'yl7 L Yn > Ty

(23) - (22) + Well-labeled Memory
A (rb) (@code) = X060, { R }
i (r ')(@fscope) =

KT
I'eé w6
= 1" [this > 7,07 v H,yh o Fyoe sy o 7
(24) - (22) + Well-labeled Memory
f 1% 7= g 1707 and (a,r) [07= (pa,r) 77 (25) - (1)
pp 1507= 1707 and (ug,7) 177= (3, 7) 17
(26) - (1) + (23) + Confinement (Lemma ?7)
BT =gy 1707 and (A7) 107= (uy,r) 107 (27)-(2)
Wy 1507 = i 1707 and (uy, ) 1700= (@, 7) 110
(28) - (2) + (24) + Confinement (Lemma ?7)
pa [707= gt 120 and (1) [07= (pi,r) [0 (29) - (5)
g 1507 = g 1507 g, Sp o iy, 3 (30) - (25)-(29)
Tl sy o i (31) - (25)-(29)
lev(7) L o (32) - hyp.7 + (3)
lev(7) C o = vy =0} (33) - (32)

[METHOD CALL| e = egle1, P](e2) for two exprs. ey and e; (hyp.6). We conclude that:

rF </J‘72760> 4 <1U'072077'0>a rk <,LL(),E(),€1> U <,LL1,E1,m1>, T+ <ﬂ1,21,62> 4
(p2, X2,v2), 7 F (i, Xo,&) § (uf, X, vs) for four mems. po, p1, w2, and f, three
labs. Xy, X1, and Yo, two refs. rg and 7, a str. m1, a val. v2, and an expr. € s.t.:
(12,70, M1) Rproto Tm, Tf = p2(rm)(m1), and {p2,75,v2,70) RNewScope {fi, €,7)
(1) - hyp.2 + hyp.6
r <.U'/72/7€0> U’ <M672(l)7r6>7 r <M672(/)761> ‘U’ </1'/17Ei,m/1>7 T+ </.L/1,21,62> U’
(o, X, v2), 7' (i), X3,€") U (s, X%, vf) for four mems. pg, pi, s, and j', three
labs. X3, X7, and 22, two refs. r(, and 7', a str. mj, a val. v5, and an expr. & s.t.:
(12,70, M) RProto Tm, Ty = pa(ry,)(mh), and (us, r's, v, 70) RNewscope (s €', ')
(2) - hyp.2 + hyp.6

0' ~ Il

TFei: o €{0,1,2}, 1y (fo, P) = (&, (701 & 74)° Y, 0! = 6" U lev(o) U
(75)°

lev(71), 70 X 70, 72 2 71, o' £ ', and 7 = (73)
(3) - hyp.1 + hyp.6

Hoy X0 ~o 1o, X0, Iyr IF po ~o p1g, lev(fo) E 0 = 1o =7
(4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)

p1, X1 g ph, B0, e b pg ~o gy, lev(7) C o = my = my

(5) -ih + (1) + (2) + (3) + (4)

H2, Do ~g i, 35, Tor b po ~g i, lev(iz) E o = v = v
(6) -ih + (1) + (2) + (3) + (5)

We consider two cases: ¢’ C ¢ and ¢’ Z 0. Suppose ¢’ C o (hyp.7). It follows that:



— 6" Ulev(io) Ulev(1) C o (7) - hyp.7 + (3)

— ro =76 and m1 = m} (8)-(4) + (5) + (7)
—mi=m) €P (9) - (1) + (2) + (8) + Correct Annotation
= Teype (7 (70, m1)) =X Teype (P4 (0, P)) = (0.7 = 75)° (10) - (3) + (9)
— X(ro) Y X4(rp) X 7o (11) - (1) + (2) + (3) + Well-labeled Memory
~ Sa(ro) = Sh(r0) < o (12) - hyp.7 + (6)-(8) + (11)
— lev(X2(ro)) = lev(X5(ro)) C lev(7o) (13) - (12)
= [Z2(ro)] = [ Z2(ro)] = 7o) (14) - (12)
= P (fo,m1) =T (Z2(ro),m1) =T (Za(ro), m1) (15) - (14)
— Tegpe (I (Z2(r0),m1)) = Teype (F) (Z}(r0)7m1)) = Taype (I (T0,M1)) (16) - (15)
— Tiev (P (X2(r0) m1)) C lev(wtyp (r (Zg(r ),m1))) (17) - Syntaz of Types

(18) - (7) + (10) + (15)

— Mev (I (Z2(r0 ) 1)) Eo (19) - (17) + (18)

— lev(Za(ro)) E (20) - (7) + (12)

— Tev (T (Z2(10),m1)) Ulev(Xa(ro)) C o (21) - (19) + (20)
— Ty =17, and rm 75 null = lev(Xa(rm)) = lev(Xy(r,)) Eo

(22) - (1) + (2) + (6) + (21) + Proto-Chain Indistinguishability (Lemma ?7?)

— lev(Xa(rm)) = lev(Z5(rr,)) C o (23) - (1) + (2) + (22)

— Ta(rm) = Dh(rm) (21) - (6) + (22) + (23)

- (Xa(ro)y,m1) =7 (X2(rm), m1) (25) - (1) + Well-Lab. Proto-Chains

(Lemma ?7)
— 1 (Z5(ro),m1) =T (Z5(rm), m1) (26) - (2) + Well-Lab. Proto-Chains

(Lemma ?7)
= lev(moype (7 (X2(rm), m1))) = lev(meype (7 (Z2(rm), ma))) E;)

(2 (18) + (25) + (26)
—ry=r} (28) - (1) + (2) + (6) + (8) + (22) + (23) + (27)
— Xo(rp) Y X5(ry) = Tegpe (T (70, P))  (29) - (1) - (3) + (6) + Well-labeled Memory
= X(ry) = Za(ry) 2 meype (7 (0, P)) / (30) - (6) + (7) + (29)
= [a(ry)] = [Z5(rs)] = [Teype (7 (70, P))] = (7671 = 73) (31) - (30)
— lev(Xa(ry)) = lev(Z‘z(r ) C lev(wty (F (70,P))) Eo (32) - (8) + (30)
u2(ry)(Q@code) = 2)(@code) r, 22(””1:. {varfvi o Tun gy e g 6}
/.fQ(Tf)(@fSCOPE) ry)(@fscope) = 7 = 7'
7 pe ~o
for some typing environment, I" and variables z,y1,- - - , yn
_ L (33) - (6)
— 'k é: 13,6, where I' = I'[this — 70, T > 71, Y1 = Tyr, > Yn = Tyn)
(34) - (33) + Well-labeled Memory
—lev(7g) Co=ro=ro (35) - tautology
— lev(f]) Co=lev(r2) Co (36) - (3)
— lev(7]) C o = vy = vy (37) - (6) + (36)
— I'flF p~e @/ (38) - (1) + (2) + (6) + (32) + (35) + (37) + Indist. Scope Alloc
— 1, T2 ~o i, Xy (39) - (1) + (2) + (6)

= g, Xp o Wy X%, T e g ~vo i, lew(3) E o = vp = v}

(40.1) -ih + (1) + (2) + (34) + (39)
—lev(7) Co=lev(s) Co (40.2) - (3)
— lev(#) Co = vy = v} (40.3) - (40.1) + (40.2)

Suppose ¢’ C o (hyp.7). It follows that:



&' Lo (41) - hyp.7 + (3)
Da(rg) Y Z5(r}) = eype (7 (70, P))  (42) - (1) - (3) + (6) + Well-labeled Memory

~/

| 2(rs)] = |Z5(r5)] = [megpe (7 (70, P))) = (797 T 73) (43) - (42)
p2(ry)(@code) = N2 g fvarfun Tun gy oo y,0 e}
pa(r 2(r¢)(@fscope) = 7
I't+eée: 7"2, !
I =T [this — 7,2 — 71,41 = Fyys e Yn = Ty ]
for some typing environment I" and variables z, Y, s Yn

(44) - (1) + (3) + (43) + Well-labeled Memory

wa(r’)(@code) = A Z5 () {varzi’m Tk Yi Yk él}
15(r'y ) (@fscope) = 7
"+ é' : 75,67
=1 [thiSHT'(’),x’ — L Y1 H%;i,--~ Yn T, /}
(45) - (2) + (3) + (43) + Well-labeled Memory
31720 = iy 1727 and (@, ) [77= (p2,7) 177 (46) - (1)
Wy [Ef"’: I %29 and (g, 7) FF’U: (f,7) 177
(47) - (1) + (44) + Confinement (Lemma ?7)
B =y 155 and (@) 177 = (uhr) 177 (48) - (2)
py 1507 = ' 1727 and (uf, #) 1700= (', 7) 177
(49) - (2) + (45) + Confinement (Lemma ?7)
p2 [727=ph 1727 and (pz,r) 7= (ub,7) |7 (50) - (6)
py 1707 = iy 15076 g, S ~o iy, 2 (51) - (46)-(50)
Dy lF pyp ~o 1 (52) - (46)-(50)
lev(t) Z o (53) - (3) + (41)
lev(7) C o= vy =0} (54) - (53)

[PROPERTY DELETION]| e = delete eg.p for some expression ey and property p (hyp.6).
It follows:

r = (u, X, e0) I (1o, Xy, m0) for some memory o, labeling X, and reference ro
such that: pg = po [ro — 110(ro)|dom(uo(re)—p)] and vy = tt. (1) - hyp.2 + hyp.6
r (', 2 eo) I (uo, X%, m0) for some memory pug, labeling X%, and reference 7

such that: ps = pg [7"6 — M6(T6)|dom(u6(r6)—p)] and v; =tt. (2) - hyp.3 + hyp.6

I'Feg: 70,00, T (70,p) = (06, 74), lev(to) E of, and 7 = prim™.
(3) - hyp.1 + hyp.6
Hoy X0 ~o 1o, X0, Iyr IF po ~o po, lev(to) E 0 = 1o =1
(4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
I'ri-pyp ~o u} (5) - (1) +(2) + (4)
vp =0 =tt (6) - (1) + (2)
lev(7) C o= vf = v} (7) - (6)

We consider two cases: lev(79) C o and lev(7o) £ o. Suppose lev(7o) C o (hyp.7). It
follows that:

ro =710 (8) - :
i S ot S (9)- (1) +(2) + ()

Suppose lev(7o) Z o (hyp.7). It follows that:
= Tev (7 (70,p)) £ (10) - hyp.7 + (4)



— X¢(ro) Y X%(ry) =< 7o (11) - (1)-(3) + Well-Lab. Mem.
= | Z¢(ro)] = [ X} (r0)] = 0] (12) - (11)
— Tiev (7 (70,P)) = T1ev (T (X4 (70),p)) = T1ev (7 (£5(r0), p)) (13) - (11)
= Mev (M (XZf(10),p)) —Wlev( (X5(r0),p)) L o (14) - (10) + (13)
= pp, Zp o Wy, X (15) - (1) + (2) + (4) + (14)

[SEQUENCE]| e = eg, e1 for two exprs. eg and e; (hyp.6). We conclude that:
— 7k {u, X e0) I (po, Xo,vo) and 7+ (uo, Xo,e1) I (s, X, vs) for some memory
Lo, labeling Yo, and value vy.
(1) - hyp.2 + hyp.6
r (W, 2 eo) b (po, Xo,vo) and 7 F (uo, Xo, e1) 4 (p}, £, v}) for some memory
10, labeling X, and value v;.

(2) - hyp.3 + hyp.6
- I'F € : 7.'0,0'() and '+ e1 : ’7"1,0'17 where: 7 = ’7"1.
(3) - hyp.1 + hyp.6
— 110, X0 ~o 110, X0, Iy7 I po ~o pg, lev(7o) E o = vo = v
(4 )—ih+hyp4+hyp.5+ (1) +(2) + (3)
— pp, Xy oo iy, X Ior b g ~o (i, lev(7) E o = vp = v
() -ih + (1) + (2) + (3) + (4)

[ConDITIONAL EXPRESSION] € = eg 7 (e1) : (e2) for three exprs. eg, e1, and ez (hyp.6).
We conclude that:
—rk (u, X, e0) I (o, Xo,v0) and r F (po, Xo, ei) | (s, Xy, vy) for some memory
Lo, labeling Yo, and value vg such that: vo € Ve = i=1and vo € Vp =i = 2.
(1) - hyp.2 + hyp.6
—r X eo) I (o, Xo,vo) and = (o, Xo, e5) I (u}, X, vf) for some memory
146, labeling X, and value v, such that: v, € Ve = j =1 and v) € Vp = j = 2.
(2) - hyp.3 + hyp.6
— I'tei: 74,04 for i € {0,1,2}, lev(7o) Eo1Mog, and 7= (71 Y %g)le”(m).
(3) - hyp.1 + hyp.6
— 10, X0 ~o 10, X0, Iy7 IF po ~o pg, lev(7o) E o = vo = v
(4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)

We consider two cases: lev(79) C o and lev(7o) £ o. Suppose lev(7) C o (hyp.7). It
follows that:
— wo = (5) - hyp.7 + (4)
—i=] 6)- (1) +(2) + ()
— g, Zp o Wy, X5, Ty I g ~vo pily, lev(i) E 0 = vp = 0

(7)-ih + (1) + (2) + 3) + (4) + (6)
—lev(t) Co=lev(i) Co (8) - (3)
— lev(T) E 0 = vy = v} (9) - (7) + (8)

Suppose lev(7o) Z o (hyp.7)

—o1Nos Lo (10) - hyp.7 + (3)

= pg 1507= po 1707 and (ug,r) 177
) + (10) + Confinement (Lemma ?7)
= Wy 1757= o 1707 and (uf,r) 177
) + (10) + Confinement (Lemma ?7)
= o [707= i 1707 and (o, 7) [77= (1, 7) 177 (13) - (4)
— g 1TT= 1 g, S o gl 5 (14) - (11)-(13)



- Lrlkpy ~o u} (15) - (11)-(13)

—lev(f) Lo (16) - hyp.7
— lev(7) E 0 = vy = v} (17) - (16)
[FuNcTION LITERAL] € = function™ " (2){var™>Tn 4y oo yn; €} (hyp.6). Let f =
A g {var“"“ Ty Yn; é}, we conclude that:
— py = p[f = [@fscope — 1, Qcode — f]] and X'y = X' [f — 7],
where: 7 = fresh(u, X, lev(T)). (1) - hyp.1 + hyp.2 + hyp.6
— py =y [7:’ — [@fscope — 1, Qcode — f]} and X} = 5’ [7:’ — 7"]7
where: 7' = fresh(u', X', lev(7)). (2) - hyp.1 + hyp.3 + hyp.6

We consider two cases: either lev(7) C o or lev(7) I 0. Suppose lev(7) C o (hyp.7):

—F= (3) - hyp.4 + hyp.7 + (1) + (2)
= g I0T= 177 UL f () 17} (4) - hyp.7 + (1)
= py 1700= @ 1T O{G f, () 1)) (5) - hyp.7 + (1)
- rE,O': o rZ/,a (6) - hyp.4
= () 177= (W) 117 (7) - hyp.5
— gy Zf ol T (8) - (4)-(7)
— ek pg ~o i) (9)- (1) +(2)
— lev(7) C o = vy = v} (10) - (1) + (2) + (3)

Suppose lev(7) C o (hyp.7):

— oy 0= [ (11) - hyp.7 + (1)
— Wy 1= 7 (12) - hyp.7 + (2)
= pup Bp o py, Tf (13) - hyp.4 + (11) + (12)
= I'r ik py ~o pf (14) - (1) + (2)
— lev(T) C o = vy =0 (15) - hyp.7

O

D Proofs for the Hybrid Type System

We say that two memories puo and u; are equal up to TS wariables, written
1o ~ W1, if they coincide everywhere except in T'S variables. Since TS variables
are not labeled, they are never part of the low-projection of a memory (or scope-
chain). Hence, if po ~o p1, o ~ pg, and py ~ py for a security level o, we
conclude that: uf ~s pf.

Lemma 8 (Noninterference). Given two memories p and (' well-labeled by
X and X' resp., an expression e, a reference r, a typing environment I', and a
reference v such that: I' = e ~ €', €’ : T, L (hyp.1), r & (u, X, €') I (g, X¢,vy)
(hyp.2), v+ (u', 2% ') § (g, X5, 05) (hyp.3), s X vvo !, 87 (hyp.4), and Ty |-
p ~o p'(hyp.5); it holds that: (i) pg, Xy ~o ply, X%, (it) I I pyp ~o pily,
and (iii) for all (7,w) € T, if lev(7) T o then: py,r F w & pp,r F w and
p,rFw=vp =0}



Proof. We proceed by induction on the derivation of hyp.2. For simplicity, we
structure our analysis of the cases according to the last rule used in the typing
of e.

[VAL] e = v for some value v (hyp.6). We conclude that:

- = (1) - hyp.1 + hyp.6
— vy =vf=v (2) - hyp.2 + hyp.3 + hyp.6
— g =,y =g, Ny =5, 5 =3 (3) - hyp.2 + hyp.3 + hyp.6 + (1)
— pf X o levx} (4) - hyp.4 + (3)
= Ll pgp ~vo i1 (5) - hyp.5 + (3)
— T = {(PRIM*, tt)} (6) - hyp.1 + hyp.6
— py,r Ett and pf,r Ett (7) - tautology
— pp,rEtt = v =0} (8) - (2)
— pp,rEtt S U, rEtt (9) - (8)

[THis| e = this (hyp.6). We conclude that:

— ¢ = this (1) - hyp.1 + hyp.6
— vy = p(r)(Qthis) and vy = p'(r)(Qthis) (2) - hyp.2 + hyp.3 + (1)
— lev(I'(this)) C o = vy = v} (3) - hyp.5 + (2)
— pp=pu, py =p, ¥y =X, and X} = 3. (4) - hyp.2 + hyp.3 + (1)
— pf X o levx} (5) - hyp4 + (4)
= Il pgp ~vo i (6) - hyp.5 + (4)
— T = {(I'(this), tt)} (7) - hyp.1 + hyp.6

In order to prove the third claim of the lemma, suppose that lev(I'(this)) C o (hyp.7).
It follows that:

— Lf,T ':/tt & pp,rEtt (8) - tautology
— vy =% (9) - hyp.7 + (3)
— py, T Ett = vp =0 (10) - tautology

[VARIABLE| e = 2, for some variable x and index ¢ (hyp.6). We conclude that:

—d=3=x (1) - hyp.2 + hyp.6
— p=ps, ¥ =X, and vy = p(rs)(x), where: (i, 7, ) Rscope T2 for some reference

Ty (2) - hyp.2 + (1)
— = py, X = X%, v =/ (r) (), where: (i, 7, &) Rscope 1 for some reference

Th. (3) - hyp.3 + (1)
— lev(I'(z)) € 0 = vy = v} (4) - hyp.5 + (2) + (3)
= up Zp o Wy, X (5) - hyp.4 + (2) + (3)
— Irl- g ~o i (6) - hyp.5 + (2) + (3)
— T={((z),tt)} (7) - hyp.1 + hyp.6

Suppose that lev(I'(z)) C o (hyp.7). It follows that:

— pprEtt e phrEtt (8) - tautology
— vy =} (9) - hyp.7 + (4)
— pp,rEtt = v =0} (10) - (9)

[BINARY OPERATION] e = eo op’ e; for two exprs. ey and e; (hyp.6). We conclude

that:
— 'k e ~ ejfef : Ty, L;, where: i € {0,1}, €' = ep,el,%; = ey op ef, and T =
To B~ Ti. (1) - hyp.1 + hyp.6



r {2, e0) U {10, Xo,vo) and 7 F (o, Xo, 1) 4 (g1, Xf,v1) for some memories
po and p1, labeling Xy, and two values vo and vy such that: gy ~ g1 and vy =
Vo Op V1 (2) - hyp.2 + (1) + Transparency
(', 2 eo) I (o, Zo, vo) and r = (ug, X, e1) 4 (ph, X%, v1) for some memories
po and pi, labeling X5, and two values vy and v; such that: p} ~ p) and v} =
v op v} (3) - hyp.3 + (1) + Transparency
po, Xo ~o o, Xo, 11 IF po ~o pp, and Vg weyerylev(io) T o = (po, 7 F wo <
1o, 7 Ewo) A (po, 7 E wo = vo =vp).  (4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
p1, X1 ~o py, X1, I ik ~o pd, and Vg, wern lev(t) E o = (u,r Fwl &
Hi, 7 E wi) A (p1,r F wr = v = 07). (5) -ih + (1) + (2) + (3) + (4)
Wy X ~o ,u Zf and I 7 Ik py ~o uf

(6) - (1) + (2) + (3) + (5) + Low-Equality Preservation for Internal Updates

Suppose that (7,w) € T (hyp.7), lev(7) € o (hyp.8), and us,r F w (hyp.9). It follows
that there are (70,wo) € Tp and (71,w1) € 11 such that:

Vﬂy'f' ﬂ,f':w<:> (/fL,?2 t:UJo/\UJ1) /\(7.' =70 Y7.'1) (7) - hyp.7 -+ (1)
wr,rEFwe (L, rEwo Aw) A (T =70 Y 71) (8) - (7)
e, Ewo, pp, 7 Ewy, and 7= 7o Y 7. (9) - hyp.9 + (8)

p, T Ewo < po,m Fwo and pp,rFwr & g1, Fwr

(10) - (1) + (2) + Invariance of Dynamic Assertions
W, r Ewo < o, Fwo and pl,r Fwr S ph,r Fw

(11) - (1) + (3) + Invariance of Dynamic Assertions

po,7 E wo and pa, 7 F w (12) - (9) + (10)
lev(o) E o and lev(71) C o (13) - hyp.8 + (9)
po, T E wo and vy = vg (14) - (4) + (12) + (13)
Wy, Ewr and vy = v} (15) - (5) + (12) + (13)
W, r Ewo and p,r Ewy (16) - (11) + (14) + (15)
Wy E wo Awi (17) - (16)
vy = v} (18) - (2) + (3) + (14) + (15)

[OBJECT LITERAL] ¢ = {}* for an index 4 and a type 7 (hyp.6). We conclude that:

T={(r,tt)} and ¢ = &; = {}7 (1) - hyp.1 + hyp.6
7= fresh(,u, Xlev(7)), i = p[f — [_proto_ — null]], puy ~ i, Xy = X[F — 7],
vf = (1) - hyp.2 + hyp.6
7' fresh(,u X lev(7)), ff = p'[# = [_proto_ — nulll], pf ~ p', X% =
2' [A' — 7], v =7 (1) - hyp.3 + hyp.6
el py ~o pily (4) - hyp.5 + (2) + (3)

Suppose that (7',w) € T (hyp.7), it follows that 7" = 7 and w = tt. We consider two
cases: either lev(7) C o or lev(7) IZ o. Suppose lev(7) C o (hyp.8):

ﬁ>

=7 (5) - hyp.4 + hyp.8 + (2) + (3)
P FP=p E’i’ U{(7, )} U{(#, proto_,null),(#, proto_)} (6)-hyp.8 + (2)
} Pre =yl 12 U{(?, 7)}U{(?, _proto_,null),(*, proto_)}

=

o

5 hyps - (3) 1 (5)
fufs X ~vo piy, U (8) - hyp.4 + (6) + (7)
pp, T Ett & phrEtt (9) - tautology
v = vj (10) - (2) + (3) + (5)
pp, T Ett = vy =0} (11) - (10)

Suppose lev(7) Z o (hyp.8):



g 1507 = p 12 (12) - hyp.8 + (2)
py 15re= 170 (13) - hyp.8 + (3)
pp Xy o Wy, Xf (13) - hyp4 + (12) + (13)

[VARIABLE ASSIGNMENT| e = z = eg for some variable e and expression ey (hyp.6).
We conclude that:

I'teo~ ep/eq : T, Lo, When (T, {(I'(z),tt)}) = w, and € = ep, wrap(w,z =

€q)- (1) - hyp.1 + hyp.6
r =, X, 66> U (po, X, vp), (to, 7, %) Rscope Twy pif = o [Te = po(ra) [+ vy]],
and po,r F w, for some memory po and reference 7. (2) - hyp.2 + hyp.6
Tk </L/, 2l766> U’ <N67E}7U}>7 <,LL6,T', 1’> RSCOPE 'r;cv /146 = 1“‘6 [T;c = /L()(T;c) [m — U}]]a
and py,r E w, for some memory po and reference 7. (3) - hyp.3 + hyp.6
Ho, o ~o p10, X0, Iy b po ~o po, and Vi, woyerlev(fo) E o = (po,r F wo &
pos 7 E wo) A (po, 7 F wo = vy =v}). (5) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
PSR ©) - () + (3) + (5)
vp,;,ﬁ ﬂ,?ﬁ':w@EI({—O’wO)eT To jF(CE’)/\ﬂ,’f":wO (7) - (1)
po, 7 Ew < 3z we)er 7o 2 L(T) A po, 7 F wo (8) - (7)
3(.,‘-0#,0)67* T0 X F(:v) A o, T F wo (9) - (2) + (8)
lev(I'(x)) T 0 = J(4g,mo)eT To 20 A po, 7 E wo (10) - (9)
lev(I'(x)) C o = vy = v} (11) - (5) + (10)
el py ~o pily (8)-(2) + (3) + (5) + (11) + Lemma ??

[PROPERTY LOOK-UP| e = eqg[er, P)’ for two expressions eg and e1 (hyp.6). It follows:

T'F e ~ 6;/6;’ ST Li, T = <7Ttype (PV (T()’P’611/)))leu(T0)€Bulev(T1)’ and ¢ —

e ¢l 85 = ellel] (1) - hyp.1 + hyp.6
r = {u, X, e0) U {po, Xo,m0) and r = (o, Xo,e1) I {u1, X, m1) for two mems. po
and p1, labeling Yo, refs. ro and 7, and string m1 such that: (u1,70,m1) Rproto 7,
7 # null = vy = py(7F)(m1), 7 = null = v = unde fined, and py ~ pi.

(2) - hyp.2 + hyp.6
rE (5 eh) b (i, S, and 1 b (uy T,¢h) b Gk, k) for two men-
ories uy and pf, labeling Xj, references 7, and #, and string m) such that:
(13,70, mh) Rproto ¥, 7 # null = v} = ps (#)(m}), # = null = vy = unde fined,
and pp ~ . (3) - hyp.3 + hyp.6
Ho, Xo ~o /j’é)a 267 Irik po ~o Mé)v V(T'o,wo)ETolev(i—O) Lo= (MO,"' Fwo < /L6,T F
wo) A (po, 7 F wo = 10 = 10) (4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
w1, X1~ ph, B, Dr e g ~e 0, Vi wer lev(f) E o = (p,m Fwr < p,rE
wi) A (pa, 7 F wi = m1 =m)) () -ih + (1) + (2) + (3) + (4)
pr, Xp o iy, X% and Ty Ik g ~o pily

(6) - (1) + (2) + (3) + (B) + Low-FEquality Preservation for Internal Updates

It remains to prove that V(; . erlev(t) C o = (us,7 F w & ,u},r Ew)A(up,rE
w = vy = v}). Suppose that (7,w) € T (hyp.7.1), lev(7) C o (hyp.7.2), and ps,r Fw
(hyp.7.3). It follows that there is (70,wo), (76, w)) € To, (F1,w1) € T1 and p € Str such
that:

7 = (Taype (7 (74, p))) 0TV A (5 — o A wi A wh A wp, where p € dom(74) =
wp =€ € {p} and p & dom(7y) = wp = (e € dom(7y) N P) (7) - hyp.7.1
e, Ewo, pp,m Ew, pp, T Ewp, and pr,r E wp (8) - hyp.7.3 + (7)
7o = 7o and wh = wo (9) - (1) + (2) + (7) + Incompatible Assertions

7 = (Taype (P (F0,p))) e FOHEED A () = wo A wi A wp, Where p € dom(70) = wp =

z; € {p} and p & dom(70) = wp = —(&; € dom(70) N P) (10) - (7) + (9)



lev(7o) U lev(11) U lev(meype (7 (70,p))) E o (11) - hyp.7.2 + (3)
pp, T Ewo & po, T Fwo, pp, T Fwi < p1,r Fwi, and py,r Fwp & p1,r Fwp

(12) - (1) + (2) + Invariance of Dynamic Assertions
W Ewo & po, T E wo, wh,rEwi & ph,rEwn, and pwhr Ewy & ph, T E wp

(13) - (1) + (3) + Invariance of Dynamic Assertions

NIOaT Ewp and rog = T6 (14) - (4) + (8) + (11) + (12)
wi, 7 Ewr and my = mj (15) - (5) + (8) + (11) + (12)
Wy Ewo and w1 E wy (16) - (13)-(15)

w1, Ewp = (p € dom(7o) Ami = p)V (p & dom(io) A m1 & dom(o))
(17) - (2) + (7) + Invariance of Bookkeeping Expressions
(p € dom(70) Am1 = p) V (p & dom(7o) Ama & dom(o)) (18) - (8) + (12) + (17)

" (0,m1) =T (70,p) (19) - (7) + (18)
to, T E wo = Xo(ro) =X 7"0 (20) - hyp.7.1 4 (1) + (2) + Well-labeled Memory
1o, T Ewo = Xo(ro) =X (21) - hyp.7.1 + (1) + (3) + Well-labeled Memory
to, T E wo = Xo(ro) Y Eo(ro) = 7o (22) - (4) + (8) + (20) + (21)
pp, T Ewo = Ef(’l"o) Y Zf(’f'o) =70

(23) - (22) + Invariance of Dynamic Assertions
Ly (ro) = X}(ro) = 7o (24) - (4) + (8) + (11) + (14) + (23)
[X¢(ro)) = [25(ro)] = 7o) (25) - (24)
P (t0,p) =T (fo,m1) = (Xy(ro),m1) =T (Ef( 0), m}) (26) - (19) + (24)
lev(meype (© (g (r0),m1))) = lev(meype (F (Z7(r5),m1))) Eo (27) - (11) + (26)
lev(eype (7 (X5 (ro),ma))) U lev(Zg(ro)) E o (28) - (11) + (25)
7 =7 and 7 # null = lev(X; (7)) = lev(E’f(f’)) Co

L f(
(29) - (2) + (3) + (6) + (28) + Proto-Chain Indistinguishability (Lemma ?7)

We consider two cases: # # null or # = null. Suppose 7 # null (hyp.8):

7 # null and lev(Xy (7)) = lev(Z: (7)) C o (30) - hyp.8 + (29)
P (Xf(ro),mi) =1 (X¢(f),m1) (31) - (1) + Well-Lab. Proto-Chains (Lemma ?7)
P (2% (ro),ma) =1 (23 (# ) 1) (32) - (2) + Well-Lab. Proto-Chains (Lemma ?7)
lev(Teype (© (7 (), m1))) = lev(Teype (7 (27(7),m1))) E o

(33) - (27) + (31) + (32)
vp = v} (34) - hyp.8 + (2) + (3) + (6) + (29) + (30) + (33)

Suppose 7 = null (hyp.8):

7 = null (35) - hyp.8 + (29)
vy = v} = undefined (36) - hyp.8 + (2) + (3) + (35)

[In

EXPRESSION] e = eg inf e1 for two expressions eg and e1, a set of properties P,

and an index j (hyp.6). It follows that:

T e ~ e;/e;/ Ty, Ly, T = {(PRIML’tt)}ﬂ'lev(r?(TO7Pae(,)/))@uleU(TO)@uleU(Tl)’ and
e =ep,el,z; =¢p in e forie {0,1} (1) - hyp.1 + hyp.6
r{u, X, e0) U {po, Xo,mo) and 7 & (o, Xo,e1) | (11, Xg,r1) for two mems. po
and u1, labeling X, refs. r1 and #, and string mo such that: (u1,70,m1) Rproto 7,
7 # null = vy = tt, 7 = null = vy = ££, and py ~ p1.

(2) - hyp.2 + hyp.6
rE (w2 e0) U (o, Xo,mo) and r = (ug, Xo, e1) 4 {ph, T, 71) for two mems. g
and 1, labeling X, refs. 7] and #', and string m(, such that: (], 74, m1) Rproto 7,
7 # null = vy = tt, 7 = null = vy = ££, and p} ~ pi.

(3) - hyp.3 + hyp.6



- Mo, 2o ~o ,U/E): E(l)v F,T IE Ho ~o ,LL(), v(ﬂ'—o,wo)GTolev(’i—O) Co= (,U«o,?" F wo <= .u/07T =

wo) A (po, T F wo = mo = my) (4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
- Mhzl ~o /-1’/17217 F7T I H1 ~o /~Lll7 V(+17W1)€Tlleﬂ(7;1) Co= (Ml,r Fw & .U‘lhr F
wi) A (1,7 Fwr =1 =r1h) (5) -ih + (1) + (2) + (3) + (4)

- /va,Ef ~No M}?E}' and F7T”_ Hf ~o .U‘;‘
(6) - (1) + (2) + (3) + (5) + Low-Equality Preservation for Internal Updates

It remains to prove that V(; yyerlev(7) C o = (us,r Fw < ph,r E w) A (ug,r E
w = vy = v}). Suppose that (7,w) € T (hyp.7.1), lev(7) E o (hyp.7.2), and py,r Fw
(hyp.7.3). It follows that there is (70,wo) € To, (71, w1), (71,w]) € T1, and p € Str:

. _ '
— 7 =PRIM" (7 (71, p))wtev(ro)uten(iy) and w = woAwi Aw' Awy, where p € dom(71) =

wp = (e0 € {p}) and p & dom(71) = wp = ~(eg € dom(71)NP) (7) - hyp.7.1 + (1)
- KT ':OJ(), Ky, T ’:wla Ky, E WL and HgsT E Wp (8) - hyp73 + (7)
— 71 =71 and W] = wy (9) - (1) + (2) + (8) + Incompatible Assertions

= PR'M’TleV(P (71, p) ) vtev(to)utev (i) and w = wo A w1 A wp, where p € dom(71) =
wp = (eo € {p}) and p & dom(71) = wp = =(ep € dom(71) N P)  (10) - (7) + (9)
— lev(7o) Ulev(71) U miev (7 (70,p)) C o (11) - hyp.7.2 4 (7)
— pp,rEFwo & po,m Fwo, pp,r Fwi & p1,r Fwi, and pyp,r Fwp & p1, 7 Fwp
(12) - (1) + (2) + Invariance of Dynamic Assertions
— perEwo & po, T F wo, g rFwr & py,rEwr, and phr Ewp & ph,r Ewp
(13) - (1) + (3) + Invariance of Dynamic Assertions

— o, Fwo and mo = my (14) - (4) + (8) + (11) + (12)
— pi,rEw and r =7 (15) - (5) + (8) + (11) + (12)
— py,rEwo and uh,rEw (16) - (13)-(15)

— p1,r Fwp < (p € dom(t1) Amo =p) V (p € dom(71) A mo & dom(71))

(17) - (2) + (7) + Invariance of Bookkeeping Expressions
— pi,rEwp & (p € dom(i1) Ami =p) V (p € dom(71) Amg &€ dom(71))

(18) - (3) + (7) + Invariance of Bookkeeping Expressions

— (p € dom(11) Amo = p) V (p € dom(71) Amo & dom(71)) (19) - (8) + (12) + (17)
— (p € dom(71) Amo =p) V (p & dom(i1) Amy & dom(71)) (20) - (14) + (19)
— ph,rEFwp (21) - (18) + (20)
W Ew, (22) - (13) + (21)
-y rEw (23) - (10) + (16) + (22)
= P (f1,m0) =T (F1,mp) =T (71,p) (24) - (7) + (14) + (19)
— p,rEw = X1(r) X1 (25) - hyp.7.1 + (1) + (2) + Well-labeled Memory
—phrEw = Xi(r) 21 (26) - hyp.7.1 + (1) + (3) + Well-labeled Memory
— p,rEwr = Xi(r) Y Xi(r) 27 (27) - (5) + (11) + (25) + (26)
— pprEwr = Xe(r) Y E}(r’l) <7
(28) - (2) + (27) + Invariance of Dynamic Assertions
= Z¢(r1) = Zp(r) 21 (29) - (6) + (9) + (11) + (15) + (28)
= [Zp(r)] = [Z5(r1)] = 7] (30) - (29)
— I_) (’i‘l,p) = |_) (f‘l,mo) = ’—’ (Zf(Tl),mo) (31) - (19) + (30)
= Tev (7 (Z7(r1),m0)) = Tev (7 (71,p)) C (32) - (11) + (31)
— Tev (P (Xf(r1),mo)) Ulev(Xs(r1)) C o (33) - (11) + (29) + (32)
— 7 =7 and 7 # null = lev(X(F)) = lev(E’f(f“’)) Co
(34) - (2) + (3) + (6) + (33) + Proto-Chain Indistinguishability (Lemma ?7?)
— vy =} (35) - (2) + (3) + (34)

[PROPERTY DELETION]| e = delete’ eg.p for some expression eg, property p, and index
i (hyp.6). It follows:



T'F e~ epfel : To, Lo, T = {(PRIMY tt)}, ¢ = e}, wrap(w,2; = delete ef.p),
where w = When( (lev(Tp), mev (7 (To, {p}, €5))) (1) - hyp.1 + hyp.6
r {u, X, e0) U {po, Xy, r0) for some mems. po and fi, labeling Xy, and reference
ro such that: po,” F w, i = po [ro = 110(70)laom(uo(ro)—p)]» V5 = tt, and py ~ fi
(2) - hyp.2 + hyp.6

(', 2 eo) I (o, X, o) for some mems. g and [/, labeling X%, and reference

7’(l) such that: ,ué),r F W, ,EL = 1“‘6 |:7"(/) — /L()(T(/))‘dom(uf)(ré)—p)]a U} = tt, and ,U,} ~ ﬂ/
(3) - hyp.3 + hyp.6

Ho, Xo ~o /j’g)a 267 Irik po ~o Mé)v V(T'o,wo)ETolev(i—o) Eo= (MO,T Fwo < MEJ?T F
wo) A (o, 7 E wo = 10 = 10)

(4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
Lyr e g ~o iy (5) - (2)-(4)
vp =0} =tt (6) - (1) + (2)
pr,TEtt = vy =0} (7) - (6)
prTEtt e phr Ett (8) - tautology

Virwerlev(®) Co = (up,rEFw e phrEw) A (up,rEw=vr=2}) (9)- (1) +
(7) + (8)

Vo T Fw S i we)ery 1ev(70) X Tiev (P (T0,P)) A f1, 7 E wo (10) - (1)
Ho, T Ew & 3z we)ems 1e0(T0) = Tiev (P (T0,P)) A po, T F wo (11) - (10)
lev(70) = ey (P (70,P)) A po, 7 E wo for some (70, wo) € To (12) - (2) + (11)

We consider two cases: lev(7o) C o and lev(7o) £ o. Suppose lev(7y) C o (hyp.7). It
follows that:

ro =10 (13) - hyp.7 + (4) + (12)
pr, Zf ~o py, Xf (14) - (2) + (3) + (4) + (13)
Suppose lev(7o) Z o (hyp.7). It follows that:
Tev (7 (T0,p)) £ o (15) - hyp.7 + (12)
Y (ro) Y X5(ro) = 7o (16) - (1)-(4) + (12) + Well-Lab. Mem.
(X4 (ro)] = | X} (r0)] = |70] (17) - (16)
— Tiev (P (70,p)) = Tiew (7 (Zf(r0), p)) = Tiev (7 (Z(10), p)) (18) - (17)
= Moy (I (Zf(r0),p)) = 7T1ev( (Z4(r0),p)) Z o (19) - (15) + (18)
pf, g ~vo py, Xy (20) - (2) + (3) + (4) + (19)

[CoNDITIONAL EXPRESSION] € = eg 77 (e1) : (e2) for three exprs. e, e1, and ez (hyp.6).
We conclude that:

Ik e~ éifef : Ty, L; for i € {0,1,2}, w = When(lev(Ty), L1 ®n L), T =
Tfjtt U TQWff7 e = e{)vwrap(wae{)/ ? (6/17‘%1 = 6/1,) : (6/27i‘]f: 6/2/))7 Wee = _'(68 € VF)7
and wer = (66/ € Vr)

(1) - hyp.1 + hyp.6
rF{p, X e0) I {po, Xo,vo) and 7+ (1o, Xo, er) U (fi, Xy, vs) for two mems. po
and fi, labeling Xy, values vo and vy such that: puy ~ i, vo € Vp = k = 1,
vo € Vp = k=2, and po,r Fw (2) - hyp.2 + hyp.6
r (2 ep) U (uo, Zo,vo) and r F (ug, Xo,e) 4 (p', X%, v}) for two mems.
po and ', labeling X, values vy and v} such that: ps ~ 4/, v & Ve = | = 1,

vh € Vp =1 =2, and uj,r Fw (3) - hyp.2 + hyp.6
Ho, EO ~No )u‘,Oa 2(/)7 F,T I Ho ~o /’L()v v(+o,w0)€Tol6U(7L0) E o= (/LO,’I’ E wo <= /"’677' F
wo) A (po, T F wo = vo = () (4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)

Va,e fl, T F W S 3(ig,00) €T, (01,01)E L1, (02,w) Ly LEV(T0) X 01MO2AfL, 7 F woAwi Aws

() - (1)



lev(70) X o1 Mo2 A po, T E wo A w1 A wa, for some (7, wo) € To, (01,w1) € L1, and
(Ug,wQ) € Ly (6) - (2) + (5)

We consider two cases: lev(7o) C o and lev(7o) £ o. Suppose lev(7y) C o (hyp.7). It
follows that:

vo = g (7) - hyp.7 + (4) + (6)
k=1 (8)-(2) + () +(7)
X e 0,2 T ik oo i Vg wyenlev(in) C o = (A1 Fwp < 4 r E
W) A (o F 0 = vy = ) G)-ih + (1) + @)+ @)+ @ 1 (8)
For all (7,w) € T} U Ty, there is (7;,w;) € T; with [ € {1,2} such that:

(lev(T )EUAM,T'ZW) (lev(R) Conp,rfruA(l=1=afFwx)AN([l=2=
fi, 7 F wer)) (10) - definition
For all (7,w) € T, with | € {1,2}\{k}, where w; = wy if | = 1 and w; = wes if
L=2 7 (1) - (2)

Vi+werlev(t) C o = (uy, 7 Fw <:>uf,r Fw)A (ug,rEFw= vy = v}) (12) - (11)
+(9)

[BINARY OPERATION] e = eg op’ e; for two exprs. ey and e; (hyp.6). We conclude
that:

't e ~ ej/ej : T;,L;, where: i € {0,1}, ¢’ = e(,e1,2; = eg op ef, and T =
To By Ti. (1) - hyp.1 + hyp.6
r{p, X, ep) U {10, Xo,vo) and 7 F (o, Xo, 1) 4 {p1, Xf,v1) for some memories
po and p1, labeling Xy, and two values v and vy such that: gy ~ g1 and vy =
Vo Op V1 (2) - hyp.2 + (1) + Transparency
(', 2 eo) I (o, Zo, vo) and r = (ug, Xo, e1) I (ph, X%, v1) for some memories
po and pi, labeling X, and two values vy and v7 such that: p} ~ pf and v} =
v(, op v} (3) - hyp.3 + (1) + Transparency
po, Xo ~o o, Xo, 11 IF po ~o pp, and Vg weyerylev(io) T o = (po, 7 E wo <
1o, Ewo) A (o, 7 F wo = vo =v5).  (4) - ih + hyp.4 + hyp.5 + (1) + (2) + (3)
p1, X1 o~o py, X1, Ior b g ~e py, and Vs wper lev(f) C oo = (p, 7 F wr <
phrEw) A (pa,r Ewl = v =0)). (5)-ih 4+ (1) + (2) + 3) + (4)
pp, Xp o iy, X and v Ik g ~o pily

(6)-(1) + ( ) + (3) + (5) + Low-Equality Preservation for Internal Updates

Suppose that (7,w) € T (hyp.7), lev(7) E o (hyp.8), and ps,r Ew (hyp.9). It follows
that there are (79, wo) € To and (71,w1) € T1 such that:

Vﬂj ﬂ,vzlzw@ (/AL,WA‘ ):ngo.n) A(i’ =170 Y7"1) (7) - hyp,? + (1)
pp,rEFwe (ur,rFwo Awi) A (T =70 Y 1) (8) - (1)
wr,r Ewo, pp,r Ewr, and 7 =7 Y 7. (9) - hyp.9 + (8)

pr,rEwo < po,m Fwo and pp, v Fwi & p1,r Fwr

(10) - (1) + (2) + Invariance of Dynamic Assertions
W Ewo & o, Fwo and py,m Fw & py,rm Ew

(11) - (1) + (3) + Invariance of Dynamic Assertions

1o, 7 F wo and p1,7 F wy (12) - (9) + (10)
lev(7p) C o and lev(1) C o (13) - hyp.8 + (9)
1o, F wo and v = v} (14) - (4) + (12) + (13)
i, r Ewr and vq = v] (15) - (5) + (12) + (13)
W, r Ewo and p,r Ewy (16) - (11) + (14) + (15)
W, r Ewo Awl (17) - (16)
vy =0} (18) - (2) + (3) + (14) + (15)



