
Software Security - Trace Properties,

Self-Composition and Symbolic Execution

José Fragoso Santos, Assistant Professor @ DEI, IST

December 3, 2019

1 Trace Properties

Question 1.1. Recall the approach for defining trace properties introduced in
the lecture. For example, the property ZeroX, describing all traces terminating
with a state mapping the program variable x to 0, is formally defined below:

ZeroX , {[〈ρ0, s0〉, ..., 〈ρn, sn〉] | sn = skip ∧ ρn(x) = 0
∧ ∀0≤i<n〈ρi, si〉 → 〈ρi+1, si+1〉}

Give the formal definition of the following trace properties:

1. AllZero, describing the traces that terminate with a state mapping all of
its variables to zero;

2. MonX, describing all traces such that the value of the program variable x

never gets decremented;

3. AllMon, describing all traces such that the values of all program variables
never get decremented;

4. XGreaterThanY, describing all traces such that, whenever both variables
x and y are defined, x is greater than y;

5. XGreaterThanAll, describing all traces such that, whenever x is defined,
it is greater than all other program variables;

6. YBookKeepX, describing all traces such that the variable x is only allowed
to swap sign once, and, if it does, the variable y will eventually be set to
the old value of x and will keep that value until the execution finishes.

Which of the properties above are liveness properties and which are safety prop-
erties? Justify your answer.

Question 1.2. Recall the syntax of WHILE programs introduced in the lecture:
e1, e2 ∈ E , n | x | 	 e1 | e1 ⊕ e2
s1, s2 ∈ S , skip | x := e | s1; s2 | if (e) { s1 } else { s2 } | while (e){s1}

1



For each property in Question 1.1, write a While statement that satisfies the
property and a While statement that does not. For the statement that does
not, give a program trace that exhibits the bug.

2 Self-Composition and Symbolic Execution

Question 2.1. Consider the following WHILE statements:

1. if (h) { l := l + z } else { skip }

2. if (h) { x := x + z } else { skip };
if (!h) { y := y + z } else { skip };
l := x + y; x := 0; y := 0;

3. y := 1;
while (x > 0) {

if (y > h) { skip } else { y := y ∗ x };
x := x− 1

}

Use self-composition and symbolic execution to check which of the above pro-
grams satisfy non-interference. Assume the standard lattice L = 〈{L,H},v〉
and a security labelling, Γ, such that only the program variable h is mapped to
the security level H.

Question 2.2. Which of the programs above would be considered secure by a
standard type system for information flow control? Which would be considered
insecure? What can be concluded about the precision of self-composition +
symbolic execution when compared to type systems for information flow control?

2


