
An Information Flow Monitor-Inlining Compiler
for Securing a Core of JavaScript

José Fragoso Santos and Tamara Rezk

INRIA
firstname.lastname@inria.fr

Abstract. Web application designers and users alike are interested in
isolation properties for trusted JavaScript code in order to prevent confi-
dential resources from being leaked to untrusted parties. Noninterference
provides the mathematical foundation for reasoning precisely about the
information flows that take place during the execution of a program. Due
to the dynamicity of the language, research on mechanisms for enforcing
noninterference in JavaScript has mostly focused on dynamic approaches.
We present the first information flow monitor inlining compiler for a re-
alistic core of JavaScript. We prove that the proposed compiler enforces
termination-insensitive noninterference and we provide an implementa-
tion that illustrates its applicability.

1 Introduction

Client-side JavaScript programs often include untrusted code dynamically loaded
from third-party code providers, such as online advertisers. This issue raises the
need for enforcement mechanisms that isolate trusted code from code that comes
from untrusted sources. Such mechanisms must prevent trusted programs from
leaking confidential resources. Noninterference [13] is an expressive and elegant
property that formally defines secure information flow, thus being commonly
used as a soundness criteria for dynamic and static analyses that aim at enforcing
secure information flow.

Due to the dynamic nature of JavaScript, research on mechanims to check
the compliance of JavaScript programs with noninterference has mostly focused
on dynamic approaches. In practice, there are two main approaches for imple-
menting a JavaScript information flow monitor: either one modifies a JavaScript
engine so that it additionally implements the security monitor (as in [9]), or
one inlines the monitor in the original program (as in [7, 11]). The second ap-
proach, which we follow, has the advantage of being browser-independent. We
present the first compiler that inlines an information flow monitor for a subset
of JavaScript that we call Core JavaScript. Core JavaScript includes the main
standard features of the language, such as objects with prototypical inheritance
and closures, as well as non-standard features, such as several unusual ways for
interacting with the global object – a special object that binds global variables.

The proposed compiler is proven sound with respect to a standard definition
of input-output termination insensitive noninterference for monitors. Hence, in

the considered setting, attackers are assumed no to be able to observe the con-
tents of intermediate memory states or to use divergent executions as a means
of disclosing confidential resources. Informally, we prove that the execution of a
compiled program only goes through if it is noninterferent; otherwise, the con-
straints inlined in the program by the compiler cause it to diverge. The paper
is divided in two main sections. Section 2 presents an information flow moni-
tored semantics for Core JavaScript that is proven sound, that is, it is proven
to enforce termination-insensitive noninterference. The proposed monitored se-
mantics differs from a previous monitor for enforcing secure information flow in
a realistic core of JavaScript [9] in that it was specifically designed to guide the
implementation of an inlining compiler. Section 3 presents an inlining compiler
that rewrites Core JavaScript programs in order to simulate their execution in
the monitor. The compiler is proven correct, meaning that the execution of a
program goes through in the monitor if and only if the execution of its instru-
mentation by the inlining compiler goes through in the original semantics. We
have implemented a prototype of the proposed compiler, which supports a sub-
set of JavaScript semantics larger than the one modeled in Core JavaScript and
that is available online at [1] together with a broad set of examples and a full
version of this paper that includes the proofs of the main theorems.

1.1 Core JavaScript Syntax and Semantics

The syntax of Core JavaScript is given in Figure 1. Some expressions are anno-
tated with one or two unique indexes for use by the compiler, which are omitted
when not needed. In the examples, we use o.p as an abbreviation for o[“p”].
Objects are the fundamental data type in JavaScript. Informally, an object can
be seen as a collection of named values. At the semantic level, we model objects
as partial functions from strings, taken from a set Str, to values. JavaScript
values comprise: (1) primitive values (taken from a set Prim), (2) object ref-
erences (taken from a set Ref), and (3) parsed function literals (for which we
use the lambda notation: λx.var y1, · · · , yn; e). Prim includes strings, numbers,
and booleans, as well as two special values null and undefined . The strings in
the domain of an object are called its properties. Some properties are internal
and therefore can neither be changed nor read by programs. For clarity, these
properties are prefixed with an “@”. Every expression that creates an object in
memory yields a free non-deterministically chosen reference that points to it.
Hence, references can be viewed as pointers to objects. Given an object o, we
use #o to denote the reference that points to it. Finally, a memory µ is a partial
mapping from references to objects.

Notation. We use the notation: (1) [p0 7→ v0, · · · , pn 7→ vn] for the partial
function that maps p0 to v0, ..., and pn to vn resp., (2) f [p0 7→ v0, · · · , pn 7→ vn]
for the function that coincides with f everywhere except in p0, ..., pn, which
are otherwise mapped to v0, ..., vn resp., (3) f |P for the restriction of f to P
(provided it is included in its domain), and (4) f(r)(p) for (f(r))(p), that is,
the application of the image of r by f (which is assumed to be a function) to p.
Furthermore, we use iff as an abbrivation for if and only if.

e ::= vi value | functioni(x){var y1, · · · , yn; e} function literal
| thisi this keyword | {}i object literal
| e0 opi e1 binary operation | e0(e1)i function call
| xi variable | e0[e1](e2)i method call
| x = e variable assignment | e0, e1 sequence
| e0[e1]i property look-up | e0 ?i,j (e1) : (e2) conditional
| e0[e1] = e2 property assignment

Where e, e0, e1 and e2 range over the set of expressions, i and j range over the set of

program indexes, x, y1, ..., yn range over the set of variable names, and op ranges over

the set of binary operators.

Fig. 1. Syntax of Core JavaScript

Function Calls and Variables. As in JavaScript, we model scope via scope
objects [2, 10]. Every function call triggers the creation of a scope object which
maps its formal parameter as well as the variables declared in its body to their
corresponding values. A scope object is said to be active if it is associated with
the function that is currently executing. Furthermore, every scope object defines
a property @scope that points to the scope object that was active when the
corresponing function literal was evaluated. The sequence of scope objects that
can be accessed from a given scope object through the respective @scope prop-
erties is called a scope-chain. The global object, which is assumed to be pointed
by a fixed reference #glob, is the object that is at the end of every scope-chain
and therefore it is the object that binds global variables. In order to determine
the value associated with a given variable, one has to inspect all objects in the
scope-chain that starts in the active scope object. This behavior is modeled by
the semantic relation RScope, given in Definition 1. If 〈µ, r0, x〉 RScope r1, then r1
is the reference that points to the scope object that is closest to the one pointed
by r0 in the corresponding scope-chain (whose objects are in the range of µ) and
which defines a binding for variable x.

Definition 1 (Scope Inspection Procedure RScope). The relation RScope
is recursively defined as follows:

Null
〈µ, null, x〉 RScope null

Base
x ∈ dom(µ(r))

〈µ, r, x〉 RScope r

Look-up
x 6∈ dom(µ(r))

〈µ, µ(r,@scope), x〉 RScope r′

〈µ, r, x〉 RScope r′

Function Literals and Variable Assignments. The evaluation of a function
literal yields a reference to an object, called a function object, that stores its
parsed counterpart. More specifically, since every function is executed in the
environment in which the corresponding function literal was evaluated, every
function object defines the following two properties: (1) @code that stores the
parsed function literal and (2) @fscope that stores the reference that points to
the scope object that was active when the corresponding function literal was
evaluated. Assuming that the global object defines a variable out originally set
to null, the evaluation of the program presented below on the left yields the

value 0 and creates in memory the list of objects displayed below on the right:

(function(x){
var g, h;
g = function(x){h(2)},
h = function(y){out = x},
g(1)

})(0);

o0s = [@scope 7→ #glob, x 7→ 0, g 7→ og, h 7→ oh]
ogs =

[
@scope 7→ #o0s, x 7→ 1

]
ohs =

[
@scope 7→ #o0s, y 7→ 2

]
o0 = [@code 7→ λx.var g, h; ê,@fscope 7→ #glob]

og =
[
@code 7→ λx.h(2),@fscope 7→ #o0s

]
oh =

[
@code 7→ λy.out = x,@fscope 7→ #o0s

]
where (1) o0s, o

g
s , and ohs correspond to the scope objects associated with the

invocation of the anonymous function, of function g, and of function h, respec-
tively, (2) objects o0, og, and oh correspond to their respective function objects,
and (3) ê corresponds to the body of the anonymous function. After the execu-
tion of this program, the global object maps out to 0 and not to 1, because the
scope object that is closest to ohs and which defines a binding for x is o0s and not
ogs (which does not belong to the scope-chain of ohs).

Object Literals and Property Look-ups. Core JavaScript features prototypical
inheritance. This means that every object (except scope objects and function
objects) defines a property prot that stores a reference to its prototype. When
trying to look-up the value of a property p of an object o, the semantics first
checks whether p ∈ dom(o). If p ∈ dom(o), the property look-up yields o(p),
otherwise the semantics checks whether the prototype of o defines a property
named p, and so forth. The sequence of objects that can be accessed from a
given object through the respective prot properties is called a prototype-chain.
The prototype-chain inspection procedure is emulated by the semantic relation
RProto, given in Definition 2. If 〈µ, r,m, Γ,Σ〉 RProto 〈r′, σ〉, then r′ is the
closest reference to r in its corresponding prototype-chain (whose objects are in
the range of µ) that defines a binding for m (we ignore, by now, the remaining
elements of the relation, since they are used by the monitored semantics and not
by the original semantics). The evaluation of an object literal yields a free non-
deterministically chosen reference that points to a new object that only defines
a property prot originally set to null. Hence, the evaluation of o0 = {}, o0.p =
0, o1 = {}, o1. prot = o0, o1.p yields 0, because, although o1 does not define
property p, its prototype does. When looking-up the value of a property p in an
object o, if p is not defined in the whole prototype-chain of o, instead of yielding
an error, the semantics yields undefined . Therefore, the expression o = {}, o.p
evaluates to undefined .

Definition 2 (RProto). The relation RProto is recursively defined as follows:

Null
〈µ, null,m, Γ,Σ〉 RProto 〈null,⊥〉

Base
m ∈ dom(µ(r))

〈µ, r,m, Γ,Σ〉 RProto 〈r,⊥〉

Look-up
m 6∈ dom(µ(r)) r′ = µ(r)(prot)
〈µ, µ(r)(prot),m, Γ,Σ〉 RProto 〈r′′, σ〉

σ′ = Γ (r)(prot) tΣ(r) t σ
〈µ, r,m, Γ,Σ〉 RProto 〈r′, σ′〉

Method Calls and the this keyword. Functions whose references are assigned
to properties of an object are called its methods. A function can be either invoked
as a normal function or as a method. When calling a function as a method, the
this keyword is bound to the corresponding object, otherwise it is bound to the
global object. Therefore, every scope object defines a property @this (that was
omitted in the first example) that holds the value of the this keyword in that
scope. We further remark that given an object o, every method m accessible from
o through its prototype-chain can be called as a method of o. Hence, suppose
that in a memory µ, the global object defines two variables o0 and o1 that hold
references to [prot 7→ null, f 7→ #of] and [prot 7→ #o0] respectively, where
#of is the reference of a given function object. In the evaluation of expression
o1.f(0), the semantics starts by creating a scope object in which property @this
is set to #o1 and then proceeds with the evaluation of the body of f .

The remaining program constructs have the usual semantics, which can be
understood from the formal definition. We make use of a big-step semantics
for Core JavaScript with the following shape: r ` 〈〈µ, e〉〉 ⇓ 〈〈µ′, v〉〉, where r
is the reference of the active scope object, µ and µ′ are the initial and final
memories respectively, e the expression to be evaluated, and v the value to
which it evaluates. Due to space constraints we choose not to give its formal
definition here. Instead, we only present its monitored version, ⇓IF (Figure 2).
In order to obtain ⇓ from ⇓IF , one simply has to remove from ⇓IF the monitor
constraints. Thus, the following correspondence between the two semantics can
be straightforwardly proven:

Lemma 1 (Semantics Correspondence). If rs, σpc ` 〈µ, s, Γ 〉 ⇓IF 〈µ′, v, Γ ′, σ〉
then rs ` 〈〈µ, s〉〉 ⇓ 〈〈µ′, v〉〉.

2 Monitoring Secure Information Flow

Specifying Security Policies. The specification of security policies usually relies
on two key elements: a lattice of security levels and a labeling that maps re-
sources to security levels. In the examples, we use L = {H,L} with L ≤ H,
meaning that resources labeled with level L (low) are less confidential than re-
sources labeled with H (high). Hence, after the execution of a program, resources
labeled with H are allowed to depend on resources originally labeled with L, but
not the opposite, since that would entail an information leak. In the following,
we always assume that ≤ and t correspond to the order relation and the least
upper bound on security levels respectively. A security labeling is a pair 〈Γ,Σ〉
where Γ : Ref → Str → L maps each property in every object to a security
level and Σ : Ref → L maps every reference to the structure security level [9]
of the corresponding object. Hence, given an object o pointed by a reference
ro, Γ (ro)(p) is the security level associated with o’s property p and Σ(ro) is
the structure security level of o. Notice that, since every variable is modeled as
a property of a given scope object, Γ also maps variables to the correspond-
ing security levels. Hence, variables and properties are treated uniformly. In the

examples, we assume that variables h and l are respectively labeled with lev-
els H and L. The structure security level of an object can be understood as
the security level associated with its domain. The need to associate a security
level with the domain of every object arises because it is possible for a pro-
gram to leak information via the domain of an object. For instance, after the
evaluation of o = {}, h ? (o.p = 0) : (null) , l = o.p, the final value of the low
variable l depends on the initial value of the high variable h. Precisely, when
h ∈ {false, 0, null, undefined}, property p is not added to the domain of o and
l is set to undefined , whereas in all other cases, both property p and variable
l are set to 0. Finally, we observe that initial memories are assumed to include
a global object for the binding of global variables. Accordingly, initial labelings
apply both to the global object as well as the objects that are initially accessible
through the global object. We say that a memory µ is well-labeled by 〈Γ,Σ〉 if
and only if dom(Γ) = dom(Σ) ⊆ dom(µ) and for every reference r ∈ dom(Γ),
dom(Γ (r)) ⊆ dom(µ(r)).

Low-Equality. We introduce a notion of indistinguishability between memories
that models the “power” of an attacker that can only observe resources up
to a given security level σ, called low-equality, denoted by ≈β,σ. Informally,
two labeled memories are low-equal at level σ if they coincide in the resources
labeled with levels ≤ σ. Since references are non-deterministically chosen we
need to be able to relate observable references in two different memories. To this
end, we parameterize the low-equality relation with a partial injective function
β : Ref → Ref [5] that relates observable references. The low-equality definition
relies on a binary relation on values, named β-equality and denoted by ∼β , given
in Defintion ??. β-Equality: two objects are β-equal if they have the same domain
and all their properties are β-equal, primitive values and parsed functions are
β-equal if they are equal, and two references r0 and r1 are β-equal if β(r0) = r1.

In the following, given a property labeling Γ , a reference r, and security
level σ, we denote by Γ (r)|σ, the set of observable properties in Γ (r) at level σ:
Γ (r)|σ = {p | Γ (r)(p) ≤ σ}.
Definition 3 (Low-Equality ≈β,σ). Two memories µ0 and µ1 are said to be
low equal with respect to 〈Γ0, Σ0〉 and 〈Γ1, Σ1〉, security level σ, and function β,
written µ0, Γ0, Σ0 ≈β,σ µ1, Γ1, Σ1, iff for all references r0, r1 ∈ dom(β) such that
r1 = β(r0), the following holds: (1) The observable domains coincide: Γ0(r0)|σ =

Γ1(r1)|σ = P . (2) The objects coincide in their observable domains: µ0(r0)|P ∼β
µ1(r1)|P . (3) Either the domains of both objects are not observable, or they are
both observable and completely coincide: (Σ0(r0) ≤ σ ∨ Σ1(r1) ≤ σ) ⇒ Σ0(r0) t
Σ1(r1) ≤ σ ∧ dom(µ0(r0)) = dom(µ1(r1)).

Monitored semantics. The rules of the monitored semantic relation, ⇓IF , de-
fined in Figure 2, have the form r, σpc ` 〈µ, e, Γ,Σ〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σ〉, where
σpc is the security level of the execution context, 〈Γ,Σ〉 and 〈Γ ′, Σ′〉 are the
initial and final labelings, and σ is the reading effect of e [13]. The remaing
elements keep their original meaning in ⇓. The reading effect of an expres-
sion is defined as the least upper bound on (1) the levels of the resources on

which the value to which it evaluates depends and (2) the level of the cur-
rent context, σpc. The monitored execution of an expression e can be inter-
preted as an extension of the unmonitored execution of e that additionally per-
forms the abstract execution of e on the abstract memory given by Γ . Hence,
the computation of Γ ′ and σ precisely mirrors the computation of µ′ and v.
The monitored semantics makes use of a relation RNewScope given in Defi-
nition 4, which models the storing of a new scope object in memory. Hence,
if 〈µ, Γ,Σ, rf , varg, rthis, σpc, σarg〉 RNewScope 〈µ′, e, Γ ′, Σ′, r′, σ′

pc〉, then: (1) µ′ and
〈Γ ′, Σ′〉 are the memory and labeling obtained from µ and 〈Γ,Σ〉 by the alloca-
tion of the new scope object in the free reference r′; (2) rf is the reference to the
function that is going to be executed, e its body, varg the argument to be used,
σpc the level of the context in which the function was invoked, σarg the reading
effect of the actual argument, and rthis the reference to the object to be used as
this; and (3) σ′pc is the security level at which the execution of e takes place.

Definition 4 (RNewScope). For any two memories µ and µ′, two labelings 〈Γ,Σ〉
and 〈Γ ′, Σ′〉, three references rf , rthis, and r′, a value varg, an expression e, and
three security levels σpc, σarg, and σ′pc:

〈µ, Γ,Σ, rf , varg, rthis, σpc, σarg〉 RNewScope 〈µ′, e, Γ ′, Σ′, r′, σ′pc〉

holds if and only if:

1. λx. {var y1, · · · , yn; e} = µ(rf)(@code),
2. r = µ(rf)(@fscope),
3. r′ 6∈ dom(µ),
4. σ′pc = σpc t Γ (rf)(@fscope),

5. µ′ = µ

[
r′ 7→

[
@scope 7→ r, x 7→ varg,@this 7→ rthis,
y1 7→ undefined, · · · , yn 7→ undefined

]]
,

6. Σ′ = Σ
[
r′ 7→ σ′pc

]
,

7. Γ ′ = Γ

[
r′ 7→

[
@scope 7→ σ′pc, x 7→ σ′pc t σarg,@this 7→ σ′pc,
y1 7→ σ′pc, · · · , yn 7→ σ′pc

]]
,

for some variables x, y1, · · · , yn.

Among the possible techniques to design a purely dynamic sound informa-
tion flow monitor, we choose to follow the no-sensitive-upgrade discipline [3].
Essentially, the monitor blocks executions that try to upgrade the value of low
resources within high contexts. To illustrate the idea of this strategy, consider
the following program: h ? (l = 0) : (null). Suppose that the monitor allows the
execution of this program to go through in an initial memory that maps h to
1 just raising the level of l to H (which constitutes a sensitive upgrade). If this
same program is executed in a memory that maps h to 0; in the final memory, l
is labeled with L and therefore it is visible. Hence, after executing this program
starting from two indistinguishable memories, we obtain two memories that are
distinguishable by an attacker at level L, meaning that the attacker has learned
something about the confidential resources of the program. Concretely, by al-
lowing the sensitive upgrade in this example, we let an attacker know whether
h belongs or not to {null, undefined , 0, false}.

Function/Method Calls, Conditional Expressions, and Function Literals. The
only non-trivial part concerning the monitoring of these four types of expressions
has to do with how the first three update the level of the execution context in
which their subexpressions are evaluated. Observe that σpc must always be higher
than or equal to the security levels of the resources that were used to decide: (1)
which branch to take in a conditional expression whose code is still executing
and (2) which function/method to execute in a function/method call expression
whose execution is still being performed. For instance, consider the following
expression:

f1 = function(x){l = 0}, f2 = function(x){l = 1}, h ? (f = f1) : (f = f2), f() (1)

Since the final value of the low variable l depends on the original value of the high
variable h, this program does not abide by the security policy and is therefore
considered illegal. Hence, independently of the branch taken in the execution of
the conditional, in the evaluation of the corresponding expression, the monitor
must be aware that the decision to take that branch depends on the value of
a high variable. Analogously, when executing the body of the function assigned
to f , the monitor must be aware that the fact that it is executing that function
and not another does also depend on the value of a high variable. Hence, σpc
must be upgraded to high both during the execution of the taken branch of the
conditional and during the execution of the body of the function bound to f .
Additionally, σpc must also take into account the level of the context in which
the function literal corresponding to the function that is currently evaluating
was itself evaluated. Consider the expression:

f = h ? (function(x){l = 0}) : (function(x){l = 1}) , f() (2)

This program is illegal because after its execution, depending on the value of the
high variable h, the low variable l can be either 0 or 1. To account for this type
of leak, when a function literal is evaluated the level of the current context is
stored in Γ (rf)(@fscope). Hence, every time the corresponding function is called,
it is executed in a context whose level is set to be ≥ Γ (rf)(@fscope).

Variable Assignments and Property Updates. In accordance with the no-
sensitive-upgrade discipline, the monitor only allows a variable x (or a property
p of an object o) to be upgraded in a context whose level is lower than or equal
to its current level: σpc ≤ Γ (rpc)(x) (or σpc ≤ Γ (#o)(p)). Therefore, considering
the expression given in Code Snippet (1), if f is a high variable, the assignments
inside the branches of the conditional are allowed to go through. However, the
assignment inside the body of the function bound to f is not, because the value
of the execution context is high, whereas the level of the variable that is be-
ing updated is low. Notice, however, that, in the Rule [Property Assignment]

(for the case in which the property to be assigned is defined), the constraint is
not σpc ≤ Γ (#o)(p), but instead σ0 t σ1 ≤ Γ (#o)(p). Observe that, since the
monitor ensures that σpc ≤ σ0 and σpc ≤ σ1, the latter constraint subsumes
the former. The need for this stricter constraint arises from the fact that in a
property assignment, the assignment that actually takes place depends on the
reading effects of (1) the expression that evaluates to the reference of the object
of the property to be assigned and (2) the expression that evaluates to the ac-
tual property whose value is to be updated. Suppose, for instance, that variable

o holds an object only containing low properties. Then, even if σpc is low, the
expression o[h] = 0 is illegal, because depending on the value of h, it updates
the value of a different low property. One cannot simply upgrade the level of the
property to which h evaluates to H because that would constitute a sensitive
upgrade, since for different values of h, an attacker at level L would see different
properties disappearing from the observable domain of o.

Property Look-ups, Property Creation Expressions, and Object Literals. When
a program looks up the value of a property p in an object o, if p 6∈ dom(o), the
security level associated with the property look-up expression must be equal to or
higher than the structure security level of o, because this property look-up leaks
information about its domain. In fact, since every property look-up searches the
prototype-chain of the corresponding object, the security monitor has to take
into account the structure security level as well as the level of property prot of
every object traversed during the prototype-chain inspection procedure (which
corresponds to σ in 〈µ, r,m, Γ,Σ〉 RProto 〈r′, σ〉). For example, given a memory:

µ = [#o0 7→ [p 7→ 1, prot 7→ null] ,#o1 7→ [prot 7→ #o0] ,#glob 7→ [o1 7→ #o1]] (3)

and a labeling 〈Γ,Σ〉, such that Γ maps all properties in every object in the
range of µ to L and Σ = [#o0 7→ L,#o1 7→ H,#glob 7→ L], the reading effect of
the expression o1.p must be H, because it leaks information about the domain of
o1 whose level is H. Naturally, when an object literal is evaluated, its structure
security level is set to the level of the execution context, because the creation of
the object is visible at that level. Finally, when creating a new property in an
object o, the monitor checks whether the structure security level of o (Σ(#o))
is at least as high as the reading effects of: (1) the expression that evaluates
to #o (σ0) and (2) the expression that evaluates to the name of the property
to create (σ1). Recall that both σ0 and σ1 are at least as high as the level
of the execution context. Hence, the monitor does also implicitly require that
σpc ≤ Σ(#o). To illustrate the need for these constraints, consider the expression
o0 = {}, o1 = {}, h ? (h = o0) : (h = o1) , h.p = 0, l = o1.p. Naturally, this program is
illegal because the final value of the low variable l depends on the original value
of the high variable h. In fact, since the level of h is not lower than or equal
to the structure security level of any of the two objects, the monitor blocks the
property creation.

Noninterferent Monitor. We say that a security monitor is noninterferent iff
it preserves the low-equality relation. Informally, an information flow monitor is
noninterferent iff, for any program e, whenever an attacker cannot distinguish
two labeled memories before executing e, then the attacker is also unable to
distinguish the final memories.

Theorem 1 (Non-Interferent Monitor). For any expression e, memories µ
and µ′, respectively labeled by 〈Γ,Σ〉 and 〈Γ ′, Σ′〉, reference r, security levels
σpc and σ, and function β s.t. µ, Γ,Σ ≈β,σ µ′, Γ ′, Σ′, r, σpc ` 〈µ, e, Γ,Σ〉 ⇓IF
〈µf , vf , Γf , Σf , σf 〉, and β(r), σpc ` 〈µ′, e, Γ ′, Σ′〉 ⇓IF 〈µ′f , v′f , Γ ′f , Σ′f , σ′f 〉; then,
there exists a function β′ extending β s.t.: µf , Γf , Σf ≈β′,σ µ′f , Γ ′f , Σ′f . Moreover,
if either σf ≤ σ or σ′f ≤ σ, then vf ∼β′ v′f .

Value
r, σpc ` 〈µ, v, Γ,Σ〉 ⇓IF 〈µ, v, Γ,Σ, σpc〉

This
rthis = µ(r)(@this) σthis = Γ (r)(@this) t σpc
r, σpc ` 〈µ, this, Γ,Σ〉 ⇓IF 〈µ, rthis, Γ,Σ, σthis〉

Binary Operation
r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, v0, Γ0, Σ0, σ0〉 r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1, v1, Γ1, Σ1, σ1〉

r, σpc ` 〈µ, e0 op e1, Γ,Σ〉 ⇓IF 〈µ1, v0 op v1, Γ1, Σ1, σ0 t σ1〉

Variable
〈µ, r, x〉 RScope rx rx 6= null

v = µ(rx)(x) σ = Γ (rx)(x) t σpc
r, σpc ` 〈µ, x, Γ,Σ〉 ⇓IF 〈µ, v, Γ,Σ, σ〉

Variable Assignment
r, σpc ` 〈µ, e, Γ,Σ〉 ⇓IF 〈µ0, v0, Γ0, Σ0, σ0〉 〈µ0, r, x〉 RScope rx

rx 6= null σpc ≤ Γ0(rx)(x)
Γ ′ = Γ0 [rx 7→ Γ0(rx) [x 7→ σ0]] µ′ = µ0 [rx 7→ µ0(rx) [x 7→ v0]]

r, σpc ` 〈µ, x = e, Γ 〉 ⇓IF 〈µ′, v0, Γ
′, Σ0, σ0〉

Property Look-up
r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1,m1, Γ1, Σ1, σ1〉

〈µ1, r0,m1, Γ1, Σ1〉 RProto 〈r′, σ′〉 〈v, σ〉 =

{
〈µ1(r′)(m1), σ0 t σ1 t σ′ t Γ1(r′)(m1)〉 if r′ 6= null
〈undefined , σ0 t σ1 t σ′〉 otherwise

r, σpc ` 〈µ, e0[e1], Γ,Σ〉 ⇓IF 〈µ1, v, Γ1, Σ1, σ〉

Property Assignment
r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1,m1, Γ1, Σ1, σ1〉
r, σpc ` 〈µ1, e2, Γ1, Σ1〉 ⇓IF 〈µ2, v2, Γ2, Σ2, σ2〉 Γ ′ = Γ2 [r0 7→ Γ2(r0) [m1 7→ σ0 t σ1 t σ2]]

µ′ = µ2 [r0 7→ µ2(r0) [m1 7→ v2]] m1 ∈ µ2(r0)⇒ σ0 t σ1 ≤ Γ2(r0)(m1) m1 6∈ µ2(r0)⇒ σ0 t σ1 ≤ Σ2(r0)

r, σpc ` 〈µ, e0[e1] = e2, Γ,Σ〉 ⇓IF 〈µ′, v2, Γ
′, Σ2, σ2〉

Function Literal
rf 6∈ dom(µ) µ′ = µ [rf 7→ [@fscope 7→ r,@code 7→ λx.e]]

Γ ′ = Γ [rf 7→ [@fscope 7→ σpc,@code 7→ σpc]] Σ′ = Σ [rf 7→ σpc]

r, σpc ` 〈µ, function(x){e}, Γ,Σ〉 ⇓IF 〈µ′, rf , Γ
′, Σ′, σpc〉

Object Literal
ro 6∈ dom(µ) µ′ = µ [ro 7→ [prot 7→ null]]

Γ ′ = Γ [ro 7→ [prot 7→ σpc]] Σ′ = Σ [ro 7→ σpc]

r, σpc ` 〈µ, {}, Γ,Σ〉 ⇓IF 〈µ′, ro, Γ
′, Σ′, σpc〉

Function Call
r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1, v1, Γ1, Σ1, σ1〉

〈µ1, Γ1, Σ1, r0, v1,#glob, σ0, σ1〉 RNewScope 〈µ̂, ê, Γ̂ , Σ̂, r̂, σ̂pc〉 r̂, σ̂pc ` 〈µ̂, ê, Γ̂ , Σ̂〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σ〉
r, σpc ` 〈µ, e0(e1), Γ,Σ〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σ〉

Method Call
r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1,m1, Γ1, Σ1, σ1〉

r, σpc ` 〈µ1, e2, Γ1, Σ1〉 ⇓IF 〈µ2, v2, Γ2, Σ2, σ2〉 〈µ2, r0,m1, Γ2, Σ2〉 RProto 〈rm, σm〉 rf = µ2(rm)(m1)

〈µ2, Γ2, Σ2, rf , v2, r0, σ0 t σ1 t Γ2(rm)(m1) t σm, σ2〉 RNewScope 〈µ̂, ê, Γ̂ , Σ̂, r̂, σ̂pc〉 r̂, σ̂pc ` 〈µ̂, ê, Γ̂ , Σ̂〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σ〉
r, σpc ` 〈µ, e0[e1](e2), Γ,Σ〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σ〉

Sequence
r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, v0, Γ0, Σ0, σ0〉 r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1, v1, Γ1, Σ1, σ1〉

r, σpc ` 〈µ, (e0, e1), Γ,Σ〉 ⇓IF 〈µ2, v1, Γ1, Σ1, σ1〉

Conditional

r, σpc ` 〈µ, ê, Γ,Σ〉 ⇓IF 〈µ̂, v̂, Γ̂ , Σ̂, σ̂〉 i =

{
0 if v̂ 6∈ {0, false, undefined , null}
1 otherwise

r, σpc t σ̂ ` 〈µ̂, ei, Γ̂ , Σ̂〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σ〉
r, σpc ` 〈µ, ê ? (e0) : (e1) , Γ,Σ〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σ〉

Fig. 2. Monitored Core JavaScript Semantics

3 Monitor-Inlining

This section presents a new information flow monitor-inlining compiler for Core
JavaScript, which instruments programs in order to simulate their execution in
the monitored semantics presented in Section 2. This instrumentation rests on
a technique that consists in pairing up each variable/property with a new one,
called its shadow variable/property [7,11], that holds its corresponding security
level. Since the compiled program has to handle security levels, we include them
in the set of program values, which means adding them to the syntax of the
language as such, as well as adding two new binary operators corresponding to
≤ (the order relation) and t (the least upper bound).

In the design of the compiler, we assume the existence of a given a set of
variable and property names, denoted by IC , that do not overlap with those
available for the programmer. In particular, the compilation of every indexed
expression requires extra variables that are meant to store the corresponding
value and security level, so that they can be later used in the compilation of
other expressions that include it. Hence, we assume the set of compiler variables
to include two indexed sets of variables {$l̂i}i∈N and {$v̂i}i∈N that are used to
store the levels and the values of intermediate expressions, respectively. Given a
variable x, we denote by $lx the corresponding shadow variable. In contrast to
variables, whose names are available at compile time, property names are dy-
namically computed. Therefore, we assume the existence of a runtime function
$shadow that given a property name outputs the name of the corresponding
shadow property. Given an expression e to compile, the compiler guarantees
that e does not use variable and property names in IC by (1) statically verifying
that the variables in e do not overlap with IC and (2) dynamically verifying
that e does not look-up/create/update properties whose names belong to IC .
To this end, the compiler makes use of a runtime function $legal that returns
true when its argument does not belong to IC . For clarity, all identifiers re-
served for the compiler are prefixed with a dollar sign,$. By making sure that
compiler identifiers do not overlap with those of the programs to compile, we
guarantee the soundness of the proposed transformation even when it receives as
input malicious programs. Malicious programs try to bypass the inlined runtime
enforcement mechanism by rewriting some of its internal variables/properties.

For instance, the compilation of the expression $l̂h = L, l = h fails, because
this program tries to tamper with the internal state of the runtime enforcement
mechanism in order to be allowed to leak confidential information. Concretely,
this program tries to transfer the content of h to l without raising the level of l
by setting the level associated with variable h to low.

Besides adding to every object o an additional shadow property $lp for every
property p in its domain, the inlined monitoring code also adds to o a special
property $struct that stores its structure security level. Hence, given an object
o = [p 7→ v0, q 7→ v1] pointed to by ro and a labeling 〈Γ,Σ〉, such that Γ (ro) =
[p 7→ H, q 7→ L] and Σ(ro) = L, the instrumented counterpart of o labeled by
〈Γ,Σ〉 is ô = [p 7→ v0, q 7→ v1, $lp 7→ H, $lq 7→ L, $struct 7→ L].

Formal Specification. The inlining compiler is defined as a function C, given in
Figure 3, that expects as input an expression e and produces a tuple 〈ê, i〉, where
ê is the expression that simulates the execution of e in the monitored seman-
tics and i an index such that, after the execution of ê, $v̂i stores the value to
which e evaluates in the monitored semantics and $l̂i its corresponding reading
effect. Besides the runtime functions $shadow and $legal, the compiler makes
use of (1) a runtime function $check that diverges when its argument is different
from true, (2) a runtime function $inspect that expects as input an object and
a property and outputs the level associated with the corresponding prototype-
chain inspection procedure, and (3) an additional binary operator hasOwnProp
that checks whether the object given as its left operand defines the property
given as its right one. In practice, this operator does not exist; instead, there
is a method hasOwnProperty, which is accessible to every object via its corre-
sponding prototype chain, that checks whether the object on which it is invoked
defines the property given as its argument. We chose not to model this feature of
the language exactly as it is in practice in order to keep the model as simple as
possible. Doing it otherwise would imply cluttering the already complex seman-
tics of the language by having an alternative case for the Rule [Method Call],
which would model the semantics of the hasOwnProperty method call.During
the evaluation of the instrumented code, the level of the execution context, σpc,
is assumed to be stored in a variable $pc. To this end, function literals are in-
strumented in order to receive as input the level of the argument and the level of
the context in which they are invoked. Function/method calls are instrumented
accordingly. Furthermore, the instrumented code of a function/method call must
have access to both the return value of the original function/method and the
level that is to be associated with that value. Therefore, every function literal
returns an object that defines two properties: (1) a property $v where it stores
the return value of the original function and (2) a property $l where it stores the
level to be associated with that value. Each compiler rule precisely mimics the
corresponding monitor rule. However, the compiler must also keep track of the
variables in which the security level and the value of the expression to compile
are stored during execution. This is done by assigning the value to which the
expression evaluates to a new variable $v̂i and the security level to a new variable
$l̂i. The compilation of every variable/property assignment and sequence expres-
sion does not introduce additional variables because the corresponding value and
reading effect are already available in the indexed variables introduced by the
corresponding subexpressions.

Correctness. Definition 5 presents a similarity relation between labeled memories
in the monitored semantics and instrumented memories in the original semantics,
denoted by Sβ . Sβ requires that for every object in the labeled memory, the
corresponding labeling coincide with the instrumented labeling (except for some
internal properties whose levels can be automatically inferred) and that the
property values of the original object be similar to those of its instrumented
counterpart according to a new version of the β-equality called C(β)-equality.
This relation, denoted by ∼C(β), differs from ∼β in that it relates each parsed

Value
ê = $l̂i = $pc, $v̂i = v

C〈vi〉 = 〈ê, i〉

Variable
x 6∈ IC ê = $l̂i = $pc t $lx, $v̂i = x

C〈xi〉 = 〈ê, i〉

This
ê = $l̂i = $pc, $v̂i = this

C〈thisi〉 = 〈ê, i〉

Binary Operation
C〈e0〉 = 〈ê0, j〉 C〈e1〉 = 〈ê1, k〉 ê = ê0, ê1, $l̂i = $l̂j t $l̂k, $v̂i = $v̂j op $v̂k

C〈e0 opi e1〉 = 〈ê, i〉

Variable Assignment
x 6∈ IC C〈e〉 = 〈e′, i〉 ê = e′, $check($pc ≤ $lx), $lx = $l̂i, x = $v̂i

C〈x = e〉 = 〈ê, i〉

Property Look-up
C〈e0〉 = 〈ê0, k〉 C〈e1〉 = 〈ê1, j〉 elev = $l̂i = $l̂k t $l̂j t $inspect($v̂k, $v̂j)

ê = ê0, ê1, $check($legal($v̂j)), elev, $v̂i = $v̂k[$v̂j]

C〈e0[e1]i〉 = 〈ê, i〉

Property Assignment
C〈e0〉 = 〈ê0, i〉 C〈e1〉 = 〈ê1, j〉 C〈e2〉 = 〈ê2, k〉

eenf = $v̂i hasOwnProp $v̂j ?
(

$check($l̂i t $l̂j ≤ $v̂i[$shadow($v̂j)])
)

:
(

$check($l̂i t $l̂j ≤ $v̂i.$struct)
)

ê = ê0, ê1, ê2, $check($legal($v̂j)), eenf , $v̂i[$shadow($v̂j)] = $l̂i t $l̂j t $l̂k, $v̂i[$v̂j] = $v̂k

C〈e0[e1] = e2〉 = 〈ê, k〉

Function Literal
C〈e〉 = 〈êf , j〉 efbody = êf , $ret = {}, $ret.$v = $v̂j , $ret.$l = $l̂j , $ret

{i1, · · · , ik} = indexes(e) ef = $v̂i = function(x, $lx, $pc){var y1, · · · , yn, $v̂i1 , $l̂i1 , · · · , $v̂ik , $l̂ik ; efbody}
ê = ef , $v̂i.$struct = $pc, $v̂i.$l@fscope = $pc, $l̂i = $pc, $v̂i

C〈functioni(x){var y1, · · · , yn; e}〉 = 〈ê, i〉

Object Literal
e′ = $v̂i.$struct = $pc, $v̂i.$lproto = $pc

ê = $v̂i = {}, e′, $l̂i = $pc, $v̂i

C〈{}i〉 = 〈ê, i〉

Function Call
C〈e0〉 = 〈ê0, j〉 C〈e1〉 = 〈ê1, k〉

e′ = $l̂ctx = $v̂j .$l@fscope t $l̂j , $ret = $v̂j($v̂k, $l̂k t $l̂ctx, $l̂ctx)

ê = ê0, ê1, e
′, $l̂i = $ret.$l, $v̂i = $ret.$v

C〈e0(e1)i〉 = 〈ê, i〉

Method Call
C〈e0〉 = 〈ê0, j〉 C〈e1〉 = 〈ê1, k〉 C〈e2〉 = 〈ê2, l〉

e′ = ê0, ê1, ê2, $l̂ctx = $l̂j t $l̂k t $inspect($v̂k, $v̂j) t $v̂j [$v̂k].$l@fscope

ê = e′, $ret = $v̂j [$v̂k]($v̂l, $l̂ctx t $l̂l, $l̂ctx), $l̂i = $ret.$l, $v̂i = $ret.$v

C〈e0[e1](e2)i〉 = 〈ê, i〉

Sequence
C〈e0〉 = 〈ê0, i〉
C〈e1〉 = 〈ê1, j〉
ê = ê0, ê1

C〈e0, e1〉 = 〈ê, j〉

Conditional
C〈e0〉 = 〈ê0, i〉 C〈e1〉 = 〈ê1, j〉 C〈e2〉 = 〈ê2, k〉

econd = $v̂i ?
(
ê1, $v̂t = $v̂j , $l̂t = $l̂j

)
:
(
ê2, $v̂t = $v̂k, $l̂t = $l̂k

)
ê = ê0, $l̂s = $pc, $pc = $pc t $l̂i, econd, $pc = $l̂s, $v̂t

C〈e0 ?s,t (e1) : (e2)〉 = 〈ê, t〉

Fig. 3. Information Flow Monitor Inlining Compiler

function with its corresponding compilation and in that it allows the domain of
the instrumented object to be larger than the one of the original object.

Definition 5 (Memory Similarity). A memory µ labeled by 〈Γ,Σ〉 is similar
to a memory µ′ w.r.t. β, written 〈µ, Γ,Σ〉 Sβ µ′, if and only if dom(β) = dom(µ)
and for every reference r ∈ dom(β), if o = µ(r) and o′ = µ′(β(r)), then
Σ(r) = o′($struct) and for all properties p ∈ dom(o)\{@scope,@this,@code},
o(p) ∼C(β) o′(p) and Γ (r)(p) = o′($lp)

The Correctness Theorem states that, provided that a program and its com-
piled counterpart are evaluated in similar configurations, the evaluation of the
original one in the monitored semantics terminates if and only if the evaluation
of its compilation also terminates in the original semantics, in which case the
final configurations as well as the computed values are similar. Therefore, since
the monitored semantics only allows secure executions to go through, we guar-
antee that, when using the inlining compiler, programs are rewritten in such a
way that only their secure executions are allowed to terminate.

Theorem 2 (Correctness). Provided that e does not use identifiers in IC , for
any labeled and instrumented configurations 〈µ, e, Γ,Σ〉 and 〈µ′, e′〉, function β,
and reference r in µ, such that 〈µ, Γ,Σ〉 Sβ µ′ and C〈e〉 = 〈e′, i〉, for some index
i; there exists 〈µf , vf , Γf , σ〉 such that r,⊥ ` 〈µ, e, Γ,Σ〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉
iff there exists 〈µ′f , v′f 〉 such that β(r) ` 〈〈µ′, e′〉〉 ⇓ 〈〈µ′f , v′f 〉〉, in which casethe
following statements hold: (1) 〈µf , Γf , Σf 〉 Sβ′ µ′f , (2) vf ∼C(β) v′f , and (3)

σf = µ′f (β(r))($l̂i).

4 Discussion and Related Work

JavaScript Semantics. Since scope objects are assumed not to have a prototype
and since we do not include the JavaScript with construct, Core JavaScript
programs are syntactically scoped. This means that we could have modeled the
binding of variables using substitution, as in other works targeting subsets of
the whole language, as [8]. However, we have chosen to model scope using scope
objects, as in [10], for two main reasons. First, we envisage to extend the model
to deal with a larger subset of the language. Second, by modeling the binding of
variables in the same way we model the binding of properties, we do not need
to introduce an extra labeling function for the labeling of variables.

Monitoring Secure Information Flow. Information flow monitors can be divided
in two main classes. Purely dynamic monitors (such as [3] and [4]) do not make
use of any kind of static analysis. By this, we also mean that purely dynamic
monitors do not expect the program to be annotated with the output of a static
analysis to be later used at runtime. On the contrary, hybrid monitors (such
as [12]) make use of static analyses to reason about the implicit flows that can
arise due to untaken execution paths. Naturally, such static analyses are not
meant to be performed at runtime. Instead, programs are usually annotated

with the output of the analysis, which is then used by the monitor during execu-
tion. Austin and Flanagan propose two different strategies for designing purely
dynamic information flow monitors. The no-sensitive-upgrade strategy [3] forbids
programs to update the value of low variables in high contexts. Alternatively,
the permissive-upgrade strategy allows programs to perform sensitive upgrades,
but it marks resources that were subject to such upgrades and forbids programs
to branch depending on the content of those resources. Our choice for the in-
lining of a purely dynamic monitor has to do with the fact that the dynamic
features of JavaScript make it very difficult to approximate the resources cre-
ated/updated in untaken program branches. Hedin and Sabelfeld [9] have been
the first to design , prove sound, and implement an information flow monitor
for a realistic core of JavaScript. Their monitor is purely dynamic and enforces
the no-sensitive-upgrade discipline. This monitor has been designed in order to
guide a browser instrumentation and not an inlining transformation. Further-
more, it differs from ours in that it labels values instead of variables/properties.
Bichhawat et al. [6] have recently proposed a hybrid monitor that makes use of
a sophisticated static analysis to minimize performance overhead [6].

Monitor-Inlining Transformations. Chudnov and Naumann [7] propose an in-
formation flow monitor inlining transformation for a WHILE language, which
inlines the hybrid information flow monitor presented in [12]. Hence, their inlin-
ing compiler includes a simple static analysis that estimates the set of variables
updated in untaken program branches. Simultaneously, Magazinius et al. [11]
propose the inlining of a purely dynamic information flow monitor that enforces
the no-sensitive-upgrade discipline for a simple imperative language that fea-
tures global functions, a let construct, and an eval expression that allows for
dynamic code evaluation. Both compilers pair up each variable with a shadow
variable. We extend this technique to handle object properties by pairing up each
property with a shadow property. The languages modeled in both [7] and [11]
only feature primitive values and do not feature scope composition (in [7] there
are no functions and in [11] every function is executed in a “clean” environment
and does not produce side-effects). Hence, in both [7] and [11], the reading ef-
fect of an expression e corresponds to the least upper bound on the levels of
the variables of e. Therefore, the instrumented code for computing the level
of e is simply $lx1 t · · · t $lxn , where {x1, · · · , xn} are the variables that ex-
plicitly occur in e. In Core JavaScript (as in JavaScript) this does not hold.
First, one can immediately see that expressions that feature property look-ups
or function/method calls do not generally verify this property. Second, expres-
sions may be composed of expressions that have side effects. Therefore, the level
associated with the whole expression can actually be lower than the least upper
bound on the levels of the variables that it includes. As an example, consider
the expression (x = y) + x. Since x = y evaluates to the value of y (besides
assigning the value of y to x), the level of the whole expression only depends
on the initial level of y. In order to handle these two issues, the inlining trans-
formation must introduce extra variables to keep track of the values and lev-
els of intermediate expressions. For instance, consider the following expression:

o0 = {}, o1 = {p : “q”, q : 0}, o0[(o0 = o1)[“p”]] = o0[“q”]. After the evaluation of
this expression the object pointed by #o1 is: [p 7→ “q”, q 7→ “q”]. An uncareful
instrumentation may ignore the fact that during its evaluation o0 is updated
with #o1. Finally, both [7] and [11] ignore the problem of malicious programs.

In summary, we have presented the first compiler for securing information
flow in an important subset of JavaScript. The presented compiler is proven
sound even when it is given as input malicious code that actively tries to bypass
the inlined enforcement mechanism. A prototype of the compiler is available
online [1] together with a broad set of examples that illustrate its applicability.

Acknowledgements This work was partially supported by the Portuguese Gov-
ernment via the PhD grant SFRH/BD/71471/2010.

References

1. Information flow monitor-inlining compiler. http://www-sop.inria.fr/indes/ifJS.
2. The 5th edition of ECMA 262 June 2011. ECMAScript Language Specification.

Technical report, ECMA, 2011.
3. T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis.

In PLAS, 2009.
4. T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In

PLAS, 2010.
5. A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement

in a java-like language. In CSFW, 2002.
6. A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information flow control in

WebKits JavaScript bytecode. In POST, 2014.
7. A. Chudnov and D. A. Naumann. Information flow monitor inlining. In CSF,

2010.
8. A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of Javascript. In ECOOP,

2010.
9. D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In

CSF, 2012.
10. S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for JavaScript.

In APLAS, 2008.
11. J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic security

monitors. Computers & Security, 2012.
12. A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In

CSF, 2010.
13. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 2003.

A Proofs of Section 2

A.1 Properties of the Low-Equality

β-Equaltiy When β corresponds to the identity function, the β-Equality rela-
tion is an equivalence relation. This fact is formally presented in Lemmas 2, 3
and 4. In the following, O|R corresponds to the set of objects that only use ref-
erences in R (where R ⊆ Ref). Likewise, Pse|R corresponds to the extension of
this definition to pseudo-values.

Lemma 2 (Reflexivity of ∼id). Given a set of references R ⊆ Ref , for every
pseudo-value v ∈ Pse|R, v ∼id v, where id is the identity function defined on R.

Proof. The proof proceeds by induction on the derivation of v ∼id v. The base
cases are: v ∈ Prim, v ∈ Fλ, and v ∈ R. The inductive case is v ∈ O|R.

– v ∈ Prim. By inspection of the Rule [Prim], the result follows.
– v ∈ Fλ. By inspection of the the Rule [Fun], the result follows.
– v ∈ R. Since id is defined on R, we conclude that v = id(v). Hence, by

inspection of the Rule [Reference], the result follows.
– v ∈ O|R. For every property p ∈ dom(v), v(p) ∈ Prim ∪ R ∪ Fλ. Hence,

we apply the induction hypothesis to conclude that v(p) ∼id v(p). Thus, by
inspection of the Rule [Object], the result follows.

Lemma 3 (Symmetry of ∼β). Given an injective function β and two pseudo-
values v0, v1 ∈ Pse such that: v0 ∼β v1, then v1 ∼β−1 v0.

Proof. The proof proceeds by induction on the derivation of v0 ∼id v1. The base
cases are: v0, v1 ∈ Prim, v0, v1 ∈ Fλ, and v0, v1 ∈ R. The inductive case is
v0, v1 ∈ O|R.

– v0, v1 ∈ Prim. By inspection of the Rule [Prim], we conclude that v0 = v1,
and hence v1 = v0. Thus, applying the same rule, the result follows.

– v0, v1 ∈ Fλ. By inspection of the Rule [Fun], we conclude that v0 = v1, and
hence v1 = v0. Thus, applying the same rule, the result follows.

– v0, v1 ∈ Ref . By inspection of the Rule [Reference], we conclude that v1 =
β(v0). Since β is injective, β−1 is defined on the range of β and particularly,
β−1(v1) = v0, from which the result follows (applying the same rle).

– v0, v1 ∈ O. By inspection of the Rule [Object], we conclude that:

dom(v0) = dom(v1) = P

and that for every property p ∈ P , v0(p) ∼β v1(p). Since v0(p) and v1(p)
are either in Prim, in Ref , or in Fλ, we apply the induction hypothesis to
conclude that: v1(p) ∼β−1 v0(p) for every property p ∈ P , thus proving the
result.

Lemma 4 (Transitivity of ∼β). Given two injective functions β0, β1 : Ref →
Ref and three pseudo-values v0, v1, v2 ∈ Pse such that v0 ∼β0

v1 and v1 ∼β1
v2,

then v0 ∼β1◦β0 v2.

Proof. The proof proceeds by case analysis on the derivations of v0 ∼β0
v1 and

v1 ∼β1
v2. There are four different cases: (1) v0, v1, v2 ∈ Prim, (2) v0, v1, v2 ∈

Fλ, (3) v0, v1, v2 ∈ Ref , and (4) v0, v1, v2 ∈ O.

– v0, v1, v2 ∈ Prim. By inspection of the [Prim], we conclude that v0 = v1 and
v1 = v2, thus following that v0 = v2 and therefore: v0 ∼β1◦β0 v2.

– v0, v1, v2 ∈ Fλ. By inspection of the Rule [Fun], we conclude that v0 = v1
and v1 = v2, thus following that v0 = v2 and therefore: v0 ∼β1◦β0

v2.
– v0, v1, v2 ∈ Ref . By inspection of the Rule [Reference], we conclude that
v1 = β0(v0) and v2 = β1(v1), thus following that v2 = β1(β0(v0)) = β1 ◦
β0(v0), from which it follows that: v0 ∼β1◦β0 v2.

– v0, v1, v2 ∈ O. By inspection of the Rule [Object], we conclude that dom(v0) =
dom(v1) = dom(v2) = P . For every property p ∈ P , v0(p) ∼β0

v1(p) and
v1(p) ∼β1

v2(p). Since v0(p), v1(p), and v2(p) are either in Prim, in Ref , or
in Fλ, we use the two first cases to conclude that for every property p ∈ P ,
v0(p) ∼β1◦β0 v2(p), thus proving the result.

Lemma 5 (Lateral Transitivity of ∼β). For any four pseudo-values v0, v′0,
v1, and v′1 in Pse such that v0 ∼id0 v′0, v1 ∼id1 v′1 and v0 ∼β v1, where id0 and
id1 correspond to the identity function on references defined on the domain of β
and on the range of β, respectively. Then, it follows that v′0 ∼id1◦β◦id0 v′1.

Proof. The proof proceeds by case analysis.

– v0, v
′
0, v1, v

′
1 ∈ Prim. By inspection of the Rule [Prim], it follows that v0 =

v1, v0 = v′0, and v1 = v′1, from which it follows that v′0 = v′1, entailing that
v′0 ∼β v′1.

– v0, v
′
0, v1, v

′
1 ∈ Fλ. By inspection of the Rule [Fun], it follows that v0 = v1,

v0 = v′0, and v1 = v′1, from which it follows that v′0 = v′1, entailing that
v′0 ∼β v′1.

– v0, v
′
0, v1, v

′
1 ∈ Ref . By inspection of the Rule [Reference], it follows that

v′0 = v0, v′1 = v1, and v1 = β(v0), from which it follows that v′1 = β(v′0),
entailing that v′0 ∼β v′1.

– v1, v
′
1, v2, v

′
2 ∈ O. By inspection of the Rule [Object], it follows that:

dom(v′0) = dom(v0) = dom(v1) = dom(v′1) = P

For every property p ∈ P , v0(p) ∼β v1(p), v0(p) ∼id0 v′0(p), and v1(p) ∼id1
v′1(p). Since v1(p), v′1(p), v2(p), and v′2(p) are either in Prim, in Ref , or in
Fλ, we can apply one of the previous cases to conclude that: v′0(p) ∼β v′1(p)
for every property p ∈ P , thus proving the result.

Low-Equality

Lemma 6. Given four security levels σ0, σ1, σ2, σ ∈ L and three sets of refer-
ences R0, R1, R2 ⊆ Ref , such that:(

σ0 ≤ σ ∨ σ1 ≤ σ
)
⇒
(
σ0 t σ1 ≤ σ ∧R0 = R1

)
(hyp.1)(

σ1 ≤ σ ∨ σ2 ≤ σ
)
⇒
(
σ1 t σ2 ≤ σ ∧R1 = R2

)
(hyp.2)

Then, it follows that
(
σ0 ≤ σ ∨ σ2 ≤ σ

)
⇒
(
σ0 t σ2 ≤ σ ∧R0 = R2

)
.

Proof. Suppose that σ0 ≤ σ (hyp.3).

– σ0 t σ1 ≤ σ and R0 = R1 (1) - hyp.1 + hyp.3
– σ1 ≤ σ (2) - (1)
– σ1 t σ2 ≤ σ and R1 = R2 (3) - hyp.2 + (2)
– σ2 ≤ σ (4) - (3)
– σ0 t σ2 ≤ σ and R0 = R2 (5) - hyp.3 + (1) + (3) + (4)

Analougously, assuming that σ2 ≤ σ, we conclude that
(
σ0tσ2 ≤ σ∧R0 = R2

)
.

Therefore, the claim of the lemma holds.

Lemma 7 (Transitivity of ≈β,σ). For any three memories µ0, µ1 and µ2,
labelings 〈Γ0, Σ0〉, 〈Γ1, Σ1〉, and 〈Γ2, Σ2〉, security level σ, and two functions
β0 and β1 such that: µ0, Γ0, Σ0 ≈β0,σ µ1, Γ1, Σ1 (hyp.1) and µ1, Γ1, Σ1 ≈β1,σ

µ2, Γ2, Σ2 (hyp.2). Then, it follows that µ0, Γ0, Σ0 ≈β1◦β0,σ µ2, Γ2, Σ2.

Proof. Suppose that r0 ∈ dom(β1 ◦ β0) and r2 = β1 ◦ β0(r0) (hyp.3).

– r0 ∈ dom(β0) (1) - hyp.3
– r1 = β0(r0) ∈ dom(β1) and r2 = β1(r1), for some r1 (2) - hyp.3
– Γ0(r0)|σ = Γ1(r1)|σ = P0 (3) - hyp.1 + (2)
– µ0(r0)|P0 ∼β0 µ1(r1)|P0 (4) - hyp.1 + (2)

–
(
Σ0(r0) ≤ σ ∨Σ1(r1) ≤ σ

)
⇒
{
dom(µ0(r0)) = dom(µ1(r1))
Σ0(r0) tΣ1(r1) ≤ σ

(5) - hyp.1 + (2)
– Γ1(r1)|σ = Γ2(r2)|σ = P1 (6) - hyp.2 + (2)
– µ1(r1)|P1 ∼β1 µ2(r2)|P1 (7) - hyp.2 + (2)

–
(
Σ1(r1) ≤ σ ∨Σ2(r2) ≤ σ

)
⇒
{
dom(µ1(r1)) = dom(µ2(r2))
Σ1(r1) tΣ2(r2) ≤ σ

(8) - hyp.2 + (2)
– Γ0(r0)|σ = Γ2(r2)|σ = P = P0 = P1 (9) - (3) + (6)
– µ0(r0)|P ∼β1◦β0 µ2(r2)|P (10) - (4) + (7) + Transitivity of ∼β
–
(
Σ0(r0) ≤ σ ∨Σ2(r2) ≤ σ

)
⇒
{
dom(µ0(r0)) = dom(µ2(r2))
Σ0(r0) tΣ2(r2) ≤ σ

(11) - (5) + (8) + Lemma 6

Since all references in dom(β1 ◦ β0) verify (9), (10), and (11), the claim of the
lemma follows.

Lemma 8 (Reflexivity of ≈id,σ). For any security level σ ∈ L, and two mem-
ories µ and µ′, two labelings 〈Γ,Σ〉 and 〈Γ ′, Σ′〉, such that µ ≤ µ′ (hyp.1) and
〈Γ,Σ〉 ≤ 〈Γ ′, Σ′〉 (hyp.2), then µ, Γ,Σ ≈id,σ µ′, Γ ′, Σ′, where id is the identity
function defined on the domain of µ.

Proof. Suppose that r ∈ dom(µ) (hyp.3):

– Γ (r)|σ = Γ ′(r)|σ = P (1) - hyp.2 + hyp.3
– µ(r)|P ∼id µ′(r)|P (2) - hyp.1 + hyp.3

–
(
Σ(r) ≤ σ ∨Σ′(r) ≤ σ

)
⇒
{
dom(µ(r)) = dom(µ′(r))
Σ(r) tΣ′(r) ≤ σ (3) - hyp.1 + hyp.2

+ hyp.3

Since all references in dom(id) verify (1), (2), and (3), the claim of the lemma
follows.

Lemma 9 (High Property Update). Given a security level σ ∈ L and two
memories µ and µ′ respectively labeled by 〈Γ,Σ〉 and 〈Γ ′, Σ′〉, such that µ co-
incides with µ′ everywhere except for some reference r and property p for which
σ 6≤ Γ (r)(p) and σ 6≤ Γ ′(r)(p); then: µ, Γ,Σ ≈id,σ µ′, Γ ′, Σ′, where id is the
identity function defined in the domain of µ.

Proof. The low-equality conditions hold for every reference r̂ 6= r. In order to see
that they also hold for r, one simply has to note that p 6∈ Γ (r)|σ and p 6∈ Γ ′(r)|σ.

Lemma 10 (Low Property Update/Creation). Given three security lev-
els σ, σ0, σ1 ∈ L, two memories µ0 and µ1 respectively labeled by 〈Γ0, Σ0〉 and
〈Γ1, Σ1〉, two references r0, r1 ∈ Ref , two values v0, v1 ∈ Val and a function β
on Ref , such that: r1 = β(r0) (hyp.1), µ0, Γ0, Σ0 ≈β,σ µ1, Γ1, Σ1 (hyp.2), and
σ0tσ1 ≤ σ ⇒ v0 ∼β v1 (hyp.3). Then, it follows that µ′0, Γ

′
0, Σ0 ≈β,σ µ′1, Γ ′1, Σ1,

for:

– µ′0 = µ0 [r0 7→ µ0(r0) [m 7→ v0]] (hyp.4),
– µ′1 = µ1 [r1 7→ µ1(r1) [m 7→ v1]] (hyp.5),
– Γ ′0 = Γ0 [r0 7→ Γ0(r0) [m 7→ σ0]] (hyp.6),
– Γ ′1 = Γ1 [r1 7→ Γ1(r1) [m 7→ σ1]] (hyp.7).

Proof. From hyp.1, we conclude that the low-equality conditions hold for every
reference r 6= r0. There are two cases to consider; either v0 6∼β v1 or v0 ∼β v1.

Case σ0 t σ1 6≤ σ (hyp.8):

– m 6∈ Γ ′0(r0)|σ and m 6∈ Γ ′1(r1)|σ (1) - hyp.2 + hyp.6 + hyp.7 + hyp.8
– Γ ′0(r0)|σ = Γ ′1(r1)|σ = P (2) - hyp.1 + hyp.2 + hyp.6 + hyp.7 + (1)
– µ′0(r0)|P ∼β µ′1(r1)|P (3) - hyp.1 + hyp.2 + hyp.4 + hyp.5 + (1)

– Case Σ0(r0) ≤ σ ∨Σ1(r1) ≤ σ (hyp.9):
• Σ0(r0) tΣ1(r1) ≤ σ (4.1) - hyp.1 + hyp.2
• dom(µ0(r0)) = dom(µ1(r1)) (4.2) - hyp.1 + hyp.2
• dom(µ′0(r0)) = dom(µ′1(r1)) (4.3) - hyp.4 + hyp.5 + (4.2)

•
(
Σ0(r0) ≤ σ ∨Σ1(r1) ≤ σ

)
⇒
{
dom(µ′0(r0)) = dom(µ′1(r1))
Σ0(r0) tΣ1(r1) ≤ σ

(4) - hyp.9 + (4.1) + (4.3)

Case σ0 t σ1 ≤ σ (hyp.8):

– v0 ∼β v1 (1) - hyp.3 + hyp.8
– Γ ′0(r0)|σ = Γ ′1(r1)|σ = P (2) - hyp.1 + hyp.2 + hyp.6 + hyp.7
– µ′0(r0)|P ∼β µ′1(r1)|P (3) - hyp.1 + hyp.2 + hyp.4 + hyp.5 + (1)

– Case Σ0(r0) ≤ σ ∨Σ1(r1) ≤ σ (hyp.9):

• Σ0(r0) tΣ1(r1) ≤ σ (4.1) - hyp.1 + hyp.2
• dom(µ0(r0)) = dom(µ1(r1)) (4.2) - hyp.1 + hyp.2
• dom(µ′0(r0)) = dom(µ′1(r1)) (4.3) - hyp.4 + hyp.5 + (4.2)

•
(
Σ0(r0) ≤ σ ∨Σ1(r1) ≤ σ

)
⇒
{
dom(µ′0(r0)) = dom(µ′1(r1))
Σ0(r0) tΣ1(r1) ≤ σ

(4) - hyp.9 + (4.1) + (4.3)

Lemma 11 (Low-Equality Preserving Object Creation). Given a secu-
rity level σ ∈ L, four consistent memories µ1, µ′1, µ2, and µ′2 respectively well-
labeled by Γ1, Γ ′1, Γ2, and Γ ′2, two references r1, r2 ∈ Ref respectively free in µ1

and µ2, , two objects o1, o2 ∈ O, and a partial injective function β defined on
Ref , such that: µ1, Γ1 ≈β,σ µ2, Γ2, µ′1 = µ1 [r1 7→ o1], µ′2 = µ2 [r1 7→ o1], and
o1|r1,Γ1

σ ∼β o2|r2,Γ2
σ . Then: µ′1, Γ

′
1 ≈β′,σ µ′2, Γ ′2, where β′ = β ∪ {(r1, r2)}.

Lemma 12. Given a security level σ ∈ L and four consistent memories µ1,
µ′1, µ2, and µ′2 respectively labeled by Γ1, Γ ′1, Γ2, and Γ ′ and a partial injective
function β defined on Ref , such that:

µ1, Γ1 ≈id1,σ µ′1, Γ ′1
µ2, Γ2 ≈id2,σ µ′2, Γ ′2
µ1, Γ1 ≈β,σ µ2, Γ2

Where id1 and id2 correspond to the identity function defined on the domain of
µ1 and the identity function defined on the domain of µ2 respectively. Then, it
follows that: µ′1, Γ

′
1 ≈β,σ µ′2, Γ ′2.

A.2 Proofs: Confinement and Noninterference

Lemma 13 (Confinement). Given a program s, a memory µ, a labeling 〈Γ,Σ〉,
a level σpc and a reference r s.t.: r, σpc ` 〈µ, e, Γ,Σ〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σ〉 (hyp.1)
for some memory µ′, value v, labeling 〈Γ ′, Σ′〉 and security level σ; then for ev-
ery security level σ′ ∈ L such that σpc 6≤ σ′ (hyp.2): µ, Γ,Σ ≈id,σ′ µ′, Γ ′, Σ′,
where id is the identity function defined on the domain of µ.

Proof. Consider an arbitrary σ′ such that σpc 6≤ σ′, the proof proceeds by induc-
tion on the depth of the derivation tree of: σpc, rs ` 〈µ, e, Γ 〉 ⇓IF 〈µ′, v, Γ ′, σ〉.
We distinguish two types of base cases:

– Those that do not change neither the memory nor the labeling: [Value],
[This], and [Variable]. Since µ′ = µ, Γ ′ = Γ , and Σ = Σ′, using the
reflexivity of ≈id,σ′ , we conclude that µ, Γ,Σ ≈id,σ′ µ′, Γ ′, Σ′.

– Those that change the heap by adding a new object: [Function Literal]

and [Object Literal].

Analogously, we distinguish four types of inductive cases:

1. Those that do not directly change the heap: [Binary Operation], [Property
Look-up], [Sequence], and [Conditional].

2. Those that directly change the heap by allocating a new object: [Function
Call] and [Method Call].

3. Those that directly change the heap either by creating a new property or by
updating the value of an existing property of an object: [Variable Assign-

ment] and [Property Assignment].

We prove one case of each type (the others are analogous).

[Function Literal] Suppose that e = function(x){e} (hyp.3). We conclude that
there is a reference rf such that:

– µ′ = µ [rf 7→ [@fscope 7→ r,@code 7→ λx.e]] (1) - hyp.1 + hyp.3

– Γ ′ = Γ [rf 7→ [@fscope 7→ σpc,@code 7→ σpc]] (2) - hyp.1 + hyp.3

– Σ′ = Σ [rf 7→ σpc] (3) - hyp.1 + hyp.3

– µ, Γ,Σ ≈id,σ′ µ′, Γ ′, Σ′ (4) - hyp.2 + (1) - (3) + High Object Creation Lemma

[Property Assignment] Suppose that e = e0[e1] = e2 (hyp.3). We conclude that
there are three memories µ0, µ1, and µ2, three labelings 〈Γ0, Σ0〉, 〈Γ1, Σ1〉, and
〈Γ2, Σ2〉, a reference r0, a string m1 ∈ Str, and three security levels σ0, σ1, and
σ2 such that:

– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 (1) - hyp.1 + hyp.3

– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1,m1, Γ1, Σ1, σ1〉 (2) - hyp.1 + hyp.3

– r, σpc ` 〈µ1, e2, Γ1, Σ1〉 ⇓IF 〈µ2, v2, Γ2, Σ2, σ2〉 (3) - hyp.1 + hyp.3

– µ, Γ,Σ ≈id,σ′ µ0, Γ0, Σ0 (4) - hyp.2 + (1) + ih

– µ0, Γ0, Σ0 ≈id,σ′ µ1, Γ1, Σ1 (5) - hyp.2 + (2) + ih

– µ1, Γ1, Σ1 ≈id,σ′ µ2, Γ2, Σ2 (6) - hyp.2 + (3) + ih

– µ, Γ,Σ ≈id,σ′ µ2, Γ2, Σ2 (7) - (4) - (6) + Transitivitiy of ≈id,σ′
– σpc ≤ σ0 u σ1 u σ2 (8) - (1) - (3) + σpc-Conservation Lemma

– σ0 u σ1 u σ2 6≤ σ′ (9) - hyp.2 + (8)

– µ′ = µ2 [r0 7→ µ2(r0) [m1 7→ v2]] (10) - hyp.1 + hyp.3

– Γ ′ = Γ2 [r0 7→ Γ2(r0) [m1 7→ σ0 t σ1 t σ2]] (11) - hyp.1 + hyp.3

– Σ′ = Σ (12) - hyp.1 + hyp.3

– Case m1 ∈ µ2(r0) (hyp.4):

• σ0 t σ1 ≤ Γ2(r0)(m1) (13.1) - hyp.1 + hyp.3 + hyp.4

• Γ2(r0)(m1) 6≤ σ′ (13.2) - (9) + (13.1)

• µ2, Γ2, Σ2 ≈id,σ′ µ′, Γ ′, Σ′ (13.3) - (10) - (12) + (13.2) + High Property
Update Lemma

• µ, Γ,Σ ≈id,σ′ µ′, Γ ′, Σ′ (13.4) - (7) + (13.3) + Transitivity of ≈id,σ′
– Case m1 6∈ µ2(r0) (hyp.4):

• σ0 t σ1 ≤ Σ2(r0) (14.1) - hyp.1 + hyp.3 + hyp.4

• Σ2(r0) 6≤ σ′ (14.2) - (9) + (14.1)

• µ2, Γ2, Σ2 ≈id,σ′ µ′, Γ ′, Σ′ (14.3) - (10) - (12) + (14.2) + High Property
Creation Lemma

• µ, Γ,Σ ≈id,σ′ µ′, Γ ′, Σ′ (14.4) - (7) + (11.3) + Transitivity of ≈id,σ′
– µ, Γ,Σ ≈id,σ′ µ′, Γ ′, Σ′ (15) - (13) + (14)

[Function Call] Suppose that e = e0(e1) (hyp.3). We conclude that there are

three memories µ0, µ1, and µ̂, three labelings 〈Γ0, Σ0〉, 〈Γ1, Σ1〉, and 〈Γ̂ , Σ̂〉, a
reference r0, a value v1, four security levels σ0, σ1, σ2, and σ̂, and an expression
ê such that:

– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 (1) - hyp.1 + hyp.3
– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1,m1, Γ1, Σ1, σ1〉 (2) - hyp.1 + hyp.3
– 〈µ1, Γ1, Σ1, r0, v1,#glob, σ0, σ1〉 RNewScope 〈µ̂, ê, Γ̂ , Σ̂, r̂, σ̂pc〉 (3) - hyp.1 + hyp.3
– r̂, σ̂pc ` 〈µ̂, ê, Γ̂ , Σ̂〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σ〉 (4) - hyp.1 + hyp.3
– µ, Γ,Σ ≈id,σ′ µ0, Γ0, Σ0 (5) - hyp.2 + (1) + ih
– µ0, Γ0, Σ0 ≈id,σ′ µ1, Γ1, Σ1 (6) - hyp.2 + (2) + ih
– µ, Γ,Σ ≈id,σ′ µ1, Γ1, Σ1 (7) - (5) + (6) + Transitivitiy of ≈id,σ′
– σpc ≤ σ0 u σ1 (8) - (1) + (2) + σpc-Conservation Lemma
– σ0 u σ1 6≤ σ′ (9) - hyp.2 + (8)
– µ1, Γ1, Σ1 ≈id,σ′ µ̂, Γ̂ , Σ̂ (10) - (3) + (9) + High Scope Object Creation
– σ̂pc 6≤ σ′ (11) - (3) + (9) + High Scope Object Creation
– µ̂, Γ̂ , Σ̂ ≈id,σ′ µ′, Γ ′, Σ′ (12) - (4) + (11) + ih
– µ, Γ,Σ ≈id,σ′ µ′, Γ ′, Σ′ (13) - (7) + (10) + (12) + Transitivity of ≈id,σ′

Lemma 14 (Scope-Chain Indistinguishability). Given two memories µ0

and µ1, two labelings 〈Γ0, Σ0〉 and 〈Γ1, Σ1〉, two references r0 and r1, a security
level σ, and a string m ∈ Str such that: µ0, Γ0, Σ0 ≈β,σ µ1, Γ1, Σ1 (hyp.1),
r0 ∼β r1 (hyp.2), 〈µ0, r0,m〉 RScope r′0 (hyp.3), 〈µ1, r1,m〉 RScope r′1 (hyp.4),
Σ0(r0) tΣ1(r1) ≤ σ (hyp.5), it follows that: r′0 ∼β r′1.

Proof. We proceed by induction on the derivation of 〈µ0, r0,m〉 RScope r′0. The
base cases are [Null] and [Base], whereas the inductive case is [Look-up].

[Null] Suppose that r0 = null (hyp.6). We conclude that:

– r′0 = null (1) - hyp.3 + hyp.6
– r′1 = null (2) - hyp.2 + (1)
– r′0 ∼β r′1 (3) - (1) + (2)

[Base] Suppose that m ∈ dom(µ0(r0)) (hyp.6). We conclude that:

– r′0 = r0 (1) - hyp.3 + hyp.6
– dom(µ0(r0)) = dom(µ1(r1)) (2) - hyp.2 + hyp.5
– m ∈ dom(µ1(r1)) (3) - hyp.6 + (2)
– r′1 = r1 (4) - hyp.4 + (3)
– r′0 ∼β r′1 (5) - hyp.2 + (1) + (4)

[Look-up] Suppose that m 6∈ dom(µ0(r0)) (hyp.6) and r0 6= null (hyp.7). We
conclude that:

– 〈µ0, r
′′
0 ,m〉 RScope r′0, where: r′′0 = µ0(r0)(@scope) (1) - hyp.3 + hyp.6 + hyp.7

– dom(µ0(r0)) = dom(µ1(r1)) (2) - hyp.2 + hyp.5
– m 6∈ dom(µ1(r1)) and r1 6= null (3) - hyp.6 + hyp.7 + (2)
– 〈µ1, r

′′
1 ,m〉 RScope r′1, where: r′′1 = µ1(r1)(@scope) (4) - hyp.4 + (3)

– Σi(r
′′
i) ≤ Σi(ri) = Γi(ri)(@scope) for i = 0, 1

(5) - (1) + (4) + Well-ordered scope-chains
– Γi(ri)(@scope) ≤ σ, for i = 0, 1 (6) - hyp.5 + (5)
– r′′0 ∼β r′′1 (7) - hyp.1 + hyp.2 + (6)
– Σi(r

′′
i) ≤ σ, for i = 0, 1 (8) - hyp.5 + (5)

– r′0 ∼β r′1 (9) - hyp.1 + (1) + (4) + (7) + (8) + ih

Lemma 15 (Prototype-Chain Indistinguishability). Given two memories
µ0 and µ1, two labeling 〈Γ0, Σ〉 and 〈Γ1, Σ1〉, two references r0 and r1, a security
level σ, a function β, and a string m ∈ Str such that: µ0, Γ0 ≈β,σ µ1, Γ1 (hyp.1),
r0 ∼β r1 (hyp.2), 〈µ0, r0,m, Γ0〉 RProto 〈r′0, σ0〉 (hyp.3), 〈µ1, r1,m, Γ1〉Rproto
〈r′1, σ1〉 (hyp.4); it holds that: σi ≤ σ ⇒ (r′0 ∼β r′1 ∧ σ0 t σ1 ≤ σ), for i = 0, 1.

Proof. To prove the result one has to prove the implication for i = 0 and i = 1.
We prove the result for i = 0. The proof for i = 1 is symmetric. We proceed by
induction on the derivation of hyp.3 and we assume that σ0 ≤ σ (hyp.5). The
base cases are [Null] and [Base], whereas the inductive case is [Look-up].

[Null] Suppose that r0 = null (hyp.6). We conclude that:

– r′0 = null and σ0 = ⊥ (1) - hyp.3 + hyp.6
– r1 = null (2) - hyp.2 + hyp.6
– r′1 = null and σ1 = ⊥ (3) - hyp.4 + (2)
– r′0 ∼β r′1 and σ0 t σ1 ≤ σ (4) - (1) + (3)

[Base] Suppose that m ∈ dom(µ0(r0)) (hyp.6). We conclude that:

– r′0 = r0 and σ0 = Γ0(r0)(m) (1) - hyp.3 + hyp.6
– Γ0(r0)(m) ≤ σ (2) - hyp.5 + (1)
– m ∈ dom(µ1(r1)) and Γ0(r0)(m) t Γ1(r1)(m) ≤ σ (3) - hyp.1 + hyp.2 + (2)
– r′1 = r1 and σ1 = Γ1(r1)(m) (4) - hyp.4 + (3)
– r′0 ∼β r′1 and σ0 t σ1 ≤ σ (5) - (1) + (3) + (4)

[Look-up] Suppose that m 6∈ dom(µ0(r0)) (hyp.6) and r0 6= null (hyp.7). We
conclude that there is a security level σ′0 such that:

– 〈µ0, r
′′
0 ,m, Γ0, Σ0〉 RProto 〈r′0, σ′

0〉 and σ0 = Γ0(r0)(prot) tΣ0(r0) t σ′
0

for r′′0 = µ0(r0)(prot) (1) - hyp.3 + hyp.6 + hyp.7
– Σ0(r0) ≤ σ (2) - hyp.5 + (1)
– r1 6= null (3) - hyp.2 + hyp.7
– dom(µ0(r0)) = dom(µ1(r1)) and Σ1(r1) ≤ σ (4) - hyp.1 + hyp.2 + (2)
– m 6∈ dom(µ1(r1)) (5) - hyp.6 + (4)
– 〈µ1, r

′′
1 ,m, Γ1, Σ1〉 RProto 〈r′1, σ′

1〉 and σ1 = Γ1(r1)(prot) tΣ1(r1) t σ′
1

for r′′1 = µ1(r1)(prot) (6) - hyp.4 + (3) + (4)
– Γ0(r0)(prot) ≤ σ (7) - hyp.5 + (1)
– r′′0 ∼β r′′1 and Γi(ri)(prot) ≤ σ for i = 0, 1

(8) - hyp.1 + hyp.2 + (1) + (6) + (7)
– σ′

0 ≤ σ ⇒ (r′0 ∼β r′1 ∧ σ′
0 t σ′

1 ≤ σ)
(9) - hyp.1 + (1) + (6) + (8) + ih

– σ′
0 ≤ σ (10) - hyp.5 + (1)

– σ′
1 ≤ σ and r′0 ∼β r′1 (11) - (9) + (10)

– σ1 ≤ σ0 (12) - (4) + (6) + (8) + (11)

Lemma 16 (Noninterference). For any expression e, memories µ and µ′,
respectively labeled by 〈Γ,Σ〉 and 〈Γ ′, Σ′〉, a reference r, and security levels σpc
and σ, if there exists a function β on Ref such that: µ, Γ,Σ ≈β,σ µ′, Γ ′, Σ′

(hyp.1), r, σpc ` 〈µ, e, Γ,Σ〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉 (hyp.2), and β(r), σpc `
〈µ′, e, Γ ′, Σ′〉 ⇓IF 〈µ′f , v′f , Γ ′f , Σ′f , σ′f 〉 (hyp.3); it follows that there exists a func-
tion β′ that extends β s.t. µf , Γf , Σf ≈β′,σ µ′f , Γ ′f , Σ′f and (σf ≤ σ ∨ σ′f ≤ σ)⇒
(vf ∼β′ v′f ∧ σf t σ′f ≤ σ).

Proof. If σpc 6≤ σ, we apply the Confinement Lemma (Lemma 13) to the hyp.2
and hyp.3 and conclude that µ, Γ,Σ ≈id,σ µf , Γf , Σf and µ′, Γ ′, Σ′ ≈id,σ µ′f , Γ ′f ,
Σ′f . Applying the Lateral Transitivity of ≈id,σ, we conclude that µ′, Γ ′ ≈β,σ
µ′f , Γ

′
f . Applying the σpc-Conservation Lemma, we conclude that σpc ≤ σf u σ′f .

Since we are assuming that σpc 6≤ σ, we conclude that both vf and v′f are not
observable.

In the following, we assume σpc ≤ σ (hyp.4). We proceed by induction on
the depth of the derivation tree of hyp.2. In the following let β(r) = r′. With
respect to the second claim of the theorem, in every case, we only prove σf ≤
σ ⇒ vf ∼β′ v′f ∧σf tσ′f ≤ σ. The proof of the symmetric implication σ′f ≤ σ ⇒
vf ∼β′ v′f ∧ σf t σ′f ≤ σ is always done in the exact same way.

[Value] Suppose that e = v (hyp.5). We conclude that:

– r, σpc ` 〈µ, v, Γ,Σ〉 ⇓IF 〈µ, v, Γ,Σ, σpc〉 (1) - hyp.2 + hyp.5
– r′, σpc ` 〈µ′, v, Γ ′, Σ′〉 ⇓IF 〈µ′, v, Γ ′, Σ′, σpc〉 (2) - hyp.3 + hyp.5
– µf = µ, Γf = Γ , Σf = Σ, vf = v, and σf = σpc (3) - hyp.3 + (1)
– µ′

f = µ′, Γ ′
f = Γ ′, Σ′

f = Σ′, v′f = v′, and σ′
f = σpc (4) - hyp.4 + (2)

– µf , Γf , Σf ≈β′,σ µ′
f , Γ

′
f , Σ

′
f (5) - hyp.1 + (3) + (4)

– vf ∼β v′f and σf t σ′
f ≤ σ (6) - hyp.4 + (3) + (4)

– σf ≤ σ ⇒ vf ∼β v′f ∧ σf t σ′
f ≤ σ (7) - (6)

[This] Suppose that e = this (hyp.5). We conclude that:

– r, σpc ` 〈µ, this, Γ,Σ〉 ⇓IF 〈µ, vf , Γ,Σ, σf 〉
for vf = µ(r)(@this) and σf = Γ (r)(@this) t σpc (1) - hyp.2 + hyp.5

– r′, σpc ` 〈µ′, this, Γ ′, Σ′〉 ⇓IF 〈µ′, v′f , Γ
′, Σ′, σ′

f 〉
for v′f = µ′(r′)(@this) and σ′

f = Γ ′(r′)(@this) t σpc (2) - hyp.3 + hyp.5
– µf = µ, Γf = Γ , Σf = Σ, µ′

f = µ′, Γ ′
f = Γ ′, and Σ′

f = Σ′ (3) - hyp.2 + hyp.3 +
(1) + (2)

– µf , Γf , Σf ≈β′,σ µ′
f , Γ

′
f , Σ

′
f (4) - hyp.1 + (3)

– Γ (r)(@this) ≤ σ ⇒ vf ∼β v′f ∧ Γ (r)(@this) t Γ ′(r′)(@this) ≤ σ (5) - hyp.1
– σf ≤ σ ⇒ vf ∼β v′f ∧ σf t σ′

f ≤ σ (6) - (1) + (2) + (5)

[Binary Operation] Suppose that e = e0 op e1 (hyp.5). We conclude that:

– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, v0, Γ0, Σ0, σ0〉 (1) - hyp.2 + hyp.5

– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1, v1, Γ1, Σ1, σ1〉 (2) - hyp.2 + hyp.5
– r′, σpc ` 〈µ′, e0, Γ

′, Σ′〉 ⇓IF 〈µ′
0, v

′
0, Γ

′
0, Σ

′
0, σ

′
0〉 (3) - hyp.3 + hyp.5

– r′, σpc ` 〈µ′
0, e1, Γ

′
0, Σ

′
0〉 ⇓IF 〈µ′

1, v
′
1, Γ

′
1, Σ

′
1, σ

′
1〉 (4) - hyp.3 + hyp.5

– vf = v0 op v1 and σf = σ0 t σ1 (5) - hyp.2 + hyp.5
– v′f = v′0 op v′1 and σ′

f = σ′
0 t σ′

1 (6) - hyp.3 + hyp.5
– µ0, Γ0, Σ0 ≈β′,σ µ′

0, Γ
′
0, Σ

′
0, for some β′ extending β (7) - hyp.1 + (1) + (3) + ih

– (σ0 ≤ σ ∨ σ′
0 ≤ σ)⇒ (v0 ∼β′ v′0 ∧ σ0 t σ′

0 ≤ σ) (8) - hyp.1 + (1) + (3) + ih
– µ1, Γ1, Σ1 ≈β′′,σ µ′

1, Γ
′
1, Σ

′
1, for some β′′ extending β′ (9) - (2) + (4) + (7) + ih

– (σ1 ≤ σ ∨ σ′
1 ≤ σ)⇒ (v1 ∼β′′ v′1 ∧ σ1 t σ′

1 ≤ σ) (10) - (2) + (4) + (7) + ih
– σf ≤ σ ⇒ vf ∼β v′f ∧ σf t σ′

f ≤ σ Suppose: σf ≤ σ (hyp.6):
• σ0 t σ1 ≤ σ (11.1) - hyp.6 + (5)
• v0 ∼β′ v′0 ∧ σ0 t σ′

0 ≤ σ (11.2) - (8) + (11.1)
• v1 ∼β′′ v′1 ∧ σ1 t σ′

1 ≤ σ (11.3) - (10) + (11.2)
• vf ∼β′′ v′f ∧ σf t σ′

f ≤ σ (11.4) - (5) + (6) + (11.1) - (11.3)

[Variable] Suppose that e = x (hyp.5). We conclude that:

– µf = µ, Γf = Γ , Σf = Σ, 〈µ, r, x〉 RScope rx, vf = µ(rx)(x),
σf = Γ (rx)(x) t σpc (1) - hyp.2 + hyp.5

– µ′
f = µ′, Γ ′

f = Γ ′, Σ′
f = Σ′, 〈µ′, r′, x〉 RScope r′x, v′f = µ′(r′x)(x),

σ′
f = Γ ′(r′x)(x) t σpc (2) - hyp.3 + hyp.5

– µf , Γf , Σf ≈β′,σ µ′
f , Γ

′
f , Σ

′
f (3) - hyp.1 + (1) + (2)

– Σ(r) tΣ′(r′) ≤ σpc (4) - Well-formed big-step transitions
– Σ(r) tΣ′(r′) ≤ σ (5) - hyp.4 + (4)
– rx ∼β r′x (6) - hyp.1 + (1) + (2) + (5) + Scope-Chain Indistinguishability
– Γ (rx)(x) ≤ σ ⇒ vf ∼β v′f ∧ Γ (rx)(x) t Γ ′(r′x)(x) ≤ σ (7) - hyp.1 + (6)
– σf ≤ σ ⇒ vf ∼β v′f ∧ σf t σ′

f ≤ σ (8) - (1) + (2) + (7)

[Variable Assignment] Suppose that e = x = e (hyp.5). We conclude that:

– r, σpc ` 〈µ, e, Γ,Σ〉 ⇓IF 〈µ0, vf , Γ0, Σ0, σf 〉 (1) - hyp.2 + hyp.5
– 〈µ0, r, x〉 RScope rx, σpc ≤ Γ0(rx)(x), and rx 6= null (2) - hyp.2 + hyp.5
– Γf = Γ0 [rx 7→ Γ0(rx) [x 7→ σf]] and µf = µ0 [rx 7→ µ0(rx) [x 7→ vf]]

(3) - hyp.2 + hyp.5
– r′, σpc ` 〈µ′, e, Γ ′, Σ′〉 ⇓IF 〈µ′

0, v
′
f , Γ

′
0, Σ

′
0, σ

′
f 〉 (4) - hyp.3 + hyp.5

– 〈µ′
0, r

′, x〉 RScope r′x, σpc ≤ Γ ′
0(r′x)(x), and r′x 6= null (5) - hyp.3 + hyp.5

– Γ ′
f = Γ ′

0

[
r′x 7→ Γ ′

0(r′x)
[
x 7→ σ′

f

]]
and µ′

f = µ′
0

[
r′x 7→ µ′

0(r′x)
[
x 7→ v′f

]]
(6) - hyp.3 + hyp.5

– µ0, Γ0, Σ0 ≈β′,σ µ′
0, Γ

′
0, Σ

′
0, for some β′ extending β (7) - hyp.1 + (1) + (4) + ih

– (σf ≤ σ ∨ σ′
f ≤ σ)⇒ (vf ∼β′ v′f ∧ σf t σ′

f ≤ σ) (8) - hyp.1 + (1) + (4) + ih
– Σ(r) tΣ′(r′) ≤ σpc (9) - Well-formed big-step transitions
– Σ(r) tΣ′(r′) ≤ σ (10) - hyp.4 + (9)
– rx ∼β r′x (11) - hyp.1 + (2) + (5) + (10) + Scope-Chain Indistinguishability
– µf , Γf , Σf ≈β′,σ µ′

f , Γ
′
f , Σ

′
f (12) - (3) + (6) + (7) + (8) + Low-Equality

Preserving Update

[Property Look-up] Suppose that e = e0[e1] (hyp.5). We conclude that:

– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 (1) - hyp.2 + hyp.5
– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µf ,m1, Γf , Σf , σ1〉 (2) - hyp.2 + hyp.5

– r′, σpc ` 〈µ′, e0, Γ
′, Σ′〉 ⇓IF 〈µ′

0, r
′
0, Γ

′
0, Σ

′
0, σ

′
0〉 (3) - hyp.3 + hyp.5

– r′, σpc ` 〈µ′
0, e1, Γ

′
0, Σ

′
0〉 ⇓IF 〈µ′

f ,m
′
1, Γ

′
f , Σ

′
f , σ

′
1〉 (4) - hyp.3 + hyp.5

– µ0, Γ0, Σ0 ≈β′,σ µ′
0, Γ

′
0, Σ

′
0, for some β′ extending β (7) - hyp.1 + (1) + (3) + ih

– (σ0 ≤ σ ∨ σ′
0 ≤ σ)⇒ (r0 ∼β′ r′0 ∧ σ0 t σ′

0 ≤ σ) (8) - hyp.1 + (1) + (3) + ih
– µf , Γf , Σf ≈β′′,σ µ′

f , Γ
′
f , Σ

′
f , for some β′′ extending β′ (9) - (2) + (4) + (7) + ih

– (σ1 ≤ σ ∨ σ′
1 ≤ σ)⇒ (m1 ∼β′′ m′

1 ∧ σ1 t σ′
1 ≤ σ) (10) - (2) + (4) + (7) + ih

– 〈µf , r0,m1, Γ1, Σ1〉 RProto 〈r̂, σ̂〉 and 〈µ′
f , r

′
0,m

′
1, Γ

′
1, Σ

′
1〉 RProto 〈r̂′, σ̂′〉 (11) -

hyp.2 + hyp.3 + hyp.5
– σf ≤ σ ⇒ vf ∼β′′ v′f ∧ σf t σ′

f ≤ σ
Suppose: σf ≤ σ (hyp.6) + r̂ 6= null (hyp.7):

• σf = σ0 t σ1 t σ̂ t Γf (r̂)(m1) (12.1) - hyp.2 + hyp.5 + hyp.7
• σ0 t σ1 t σ̂ t Γf (r̂)(m1) ≤ σ (12.2) - hyp.6 + (12.1)
• r0 ∼β′ r′0 ∧ σ0 t σ′

0 ≤ σ (12.3) - (8) + (12.2)
• m1 = m′

1 ∧ σ1 t σ′
1 ≤ σ (12.4) - (10) + (12.2)

• r̂ ∼β′′ r̂′ and σ̂ t σ̂′ ≤ σ
(12.5) - (9) + (11) + (12.2) + (12.3) + Prototype-Chain Indistinguishability

• r̂′ 6= null (12.6) - hyp.7 + (12.5)
• vf = µf (r̂)(m1) and v′f = µ′

f (r̂′)(m1) (12.7) - hyp.2 + hyp.5 + hyp.7 + (12.6)
• Γf (r̂)(m1) t Γ ′

f (r̂′)(m1) ≤ σ and vf ∼β′′ v′f
(12.8) - (9) + (12.1) + (12.5) + (12.7)

• σf t σ′
f ≤ σ (12.9) - (12.2) + (12.3) + (12.4) + (12.8)

Suppose: σf ≤ σ (hyp.6) + r̂ = null (hyp.7):

• σf = σ0 t σ1 t σ̂ (12.10) - hyp.2 + hyp.5 + hyp.7
• σ0 t σ1 t σ̂ ≤ σ (12.11) - hyp.6 + (12.10)
• r0 ∼β′ r′0 ∧ σ0 t σ′

0 ≤ σ (12.12) - (8) + (12.11)
• m1 = m′

1 ∧ σ1 t σ′
1 ≤ σ (12.13) - (10) + (12.11)

• r̂ ∼β′′ r̂′ and σ̂ t σ̂′ ≤ σ
(12.14) - (9) + (11) + (12.12) + (12.3) + Proptoype-Chain Indistinguishability

• r̂′ = null (12.15) - hyp.7 + (12.14)
• vf = undefined and v′f = undefined

(12.16) - hyp.2 + hyp.5 + hyp.7 + (12.15)
• σf t σ′

f ≤ σ (12.17) - (12.11) + (12.13) + (12.14)

[Property Assignment] Suppose that e = e0[e1] = e2 (hyp.5). We conclude that:

– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 (1) - hyp.2 + hyp.5
– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1,m1, Γ1, Σ1, σ1〉 (2) - hyp.2 + hyp.5
– r, σpc ` 〈µ1, e2, Γ1, Σ1〉 ⇓IF 〈µ2, vf , Γ2, Σf , σf 〉 (3) - hyp.2 + hyp.5
– µf = µ2 [r0 7→ µ2(r0) [m1 7→ vf]] and Γf = Γ2 [r0 7→ Γ2(r0) [m1 7→ σ0 t σ1 t σf]]

(4) - hyp.2 + hyp.5
– r′, σpc ` 〈µ′, e0, Γ

′, Σ′〉 ⇓IF 〈µ′
0, r

′
0, Γ

′
0, Σ

′
0, σ

′
0〉 (5) - hyp.3 + hyp.5

– r′, σpc ` 〈µ′
0, e1, Γ

′
0, Σ

′
0〉 ⇓IF 〈µ′

1,m
′
1, Γ

′
1, Σ

′
1, σ

′
1〉 (6) - hyp.3 + hyp.5

– r′, σpc ` 〈µ′
1, e2, Γ

′
1, Σ

′
1〉 ⇓IF 〈µ′

2, v
′
f , Γ

′
2, Σ

′
f , σ

′
f 〉 (7) - hyp.3 + hyp.5

– µ′
f = µ′

2

[
r′0 7→ µ′

2(r′0)
[
m′

1 7→ v′f
]]

and Γ ′
f = Γ ′

2

[
r′0 7→ Γ ′

2(r′0)
[
m′

1 7→ σ′
0 t σ′

1 t σ′
f

]]
(8) - hyp.3 + hyp.5

– µ0, Γ0, Σ0 ≈β′,σ µ′
0, Γ

′
0, Σ

′
0, for some β′ extending β (9) - hyp.1 + (1) + (5) + ih

– (σ0 ≤ σ ∨ σ′
0 ≤ σ)⇒ (r0 ∼β′ r′0 ∧ σ0 t σ′

0 ≤ σ) (10) - hyp.1 + (1) + (3) + ih
– µ1, Γ1, Σ1 ≈β′′,σ µ′

1, Γ
′
1, Σ

′
1, for some β′′ extending β′ (11) - (2) + (6) + (9) + ih

– (σ1 ≤ σ ∨ σ′
1 ≤ σ)⇒ (m1 = m′

1 ∧ σ1 t σ′
1 ≤ σ) (12) - (2) + (6) + (9) + ih

– µ2, Γ2, Σf ≈β′′′,σ µ′
2, Γ

′
2, Σ

′
f , for some β′′′ extending β′′

(13) - (3) + (7) + (11) + ih
– (σf ≤ σ ∨ σ′

f ≤ σ)⇒ (vf ∼β′′′ v′f ∧ σf t σ′
f ≤ σ) (14) - (3) + (7) + (11) + ih

– µf , Γf , Σf ≈β′′′,σ µ′
f , Γ

′
f , Σ

′
f

Suppose: σ0 t σ1 ≤ σ (hyp.6):
• r0 ∼β′ r′0 ∧ σ0 t σ′

0 ≤ σ (15.1) - hyp.6 + (10)
• m1 = m′

1 ∧ σ1 t σ′
1 ≤ σ (15.2) - hyp.6 + (12)

• µf , Γf , Σf ≈β′′′,σ µ′
f , Γ

′
f , Σ

′
f

(15.3) - (4) + (8) + (13) - (15.2) + Visible Property Assignment
There are four additional subcases to consider. We only consider one of them.
Suppose: σ0 t σ1 6≤ σ (hyp.6), m1 ∈ dom(µ2(r0)) (hyp.7), and m′

1 6∈ dom(µ′
2(r′0))

(hyp.8):
• σ′

0 t σ′
1 6≤ σ (15.1) - hyp.6 + (10) + (12)

• σ0 t σ1 ≤ Γ2(r0)(m1) (15.2) - hyp.2 + hyp.5 + hyp.7
• Γ2(r0)(m1) 6≤ σ (15.3) - hyp.6 + (15.2)
• σ′

0 t σ′
1 ≤ Σ′

f (r′0) (15.4) - hyp.3 + hyp.5 + hyp.8
• Σ′

f (r′0) 6≤ σ (15.5) - (15.1) + (15.4)
• µ2, Γ2, Σf ≈id,σ µf , Γf , Σf

(15.6) - hyp.7 + (4) + (15.3) + Confined Property Update
• µ′

2, Γ
′
2, Σ

′
f ≈id,σ µ′

f , Γ
′
f , Σ

′
f

(15.7) - hyp.8 + (8) + (15.5) + Confined Property Creation
• µf , Γf , Σf ≈β′′′,σ µ′

f , Γ
′
f , Σ

′
f (15.8) - (13) + (15.6) + (15.7) + Lateral

Transitivity of ≈β,σ

[Function Literal] Suppose that e = function(x){e} (hyp.5). We conclude that
there are two references rf and r′f such that:

– µf = µ [rf 7→ [@fscope 7→ r,@code 7→ λx.e]] (1) - hyp.2 + hyp.5
– Γf = Γ [rf 7→ [@fscope 7→ σpc,@code 7→ σpc]] and Σf = Σ [rf 7→ σpc]

(2) - hyp.2 + hyp.5
– vf = rf , σf = σpc, and rf 6∈ dom(µ) (3) - hyp.2 + hyp.5
– µ′

f = µ′ [r′f 7→ [@fscope 7→ r′,@code 7→ λx.e]
]

(4) - hyp.3 + hyp.5
– Γ ′

f = Γ ′ [r′f 7→ [@fscope 7→ σpc,@code 7→ σpc]
]

and Σf = Σ′ [r′f 7→ σpc
]

(5) - hyp.3 + hyp.5
– v′f = r′f , σ′

f = σpc, and r′f 6∈ dom(µ′) (6) - hyp.3 + hyp.5

Let β′ = β
[
rf 7→ r′f

]
(hyp.6). We conclude that:

– µf , Γf , Σf ≈β′,σ µ′
f , Γ

′
f , Σ

′
f (7) - hyp.1 + hyp.6 + (1) + (2) + (4) + (5)

– vf ∼β′ v′f ∧ σf t σ′
f ≤ σ (8) - hyp.4 + hyp.6 + (3) + (6)

– (σf ≤ σ ∨ σ′
f ≤ σ)⇒ (vf ∼β′ v′f ∧ σf t σ′

f ≤ σ) (9) - (8)

[Object Literal] Suppose that e = {} (hyp.5). We conclude that there are two
references ro and r′o such that:

– µf = µ [ro 7→ [prot 7→ null]] (1) - hyp.2 + hyp.5
– Γf = Γ [ro 7→ [prot 7→ σpc]] and Σf = Σ [ro 7→ σpc] (2) - hyp.2 + hyp.5
– vf = ro, σf = σpc, and ro 6∈ dom(µ) (3) - hyp.2 + hyp.5
– µ′

f = µ′ [r′o 7→ [prot 7→ null]] (4) - hyp.3 + hyp.5
– Γ ′

f = Γ ′ [r′o 7→ [prot 7→ σpc]] and Σ′
f = Σ′ [r′o 7→ σpc] (5) - hyp.3 + hyp.5

– v′f = r′o, σ
′
f = σpc, and r′o 6∈ dom(µ′) (6) - hyp.3 + hyp.5

Let β′ = β [ro 7→ r′o] (hyp.6). We conclude that:

– µf , Γf , Σf ≈β′,σ µ′
f , Γ

′
f , Σ

′
f (7) - hyp.1 + hyp.6 + (1) + (2) + (4) + (5)

– vf ∼β′ v′f ∧ σf t σ′
f ≤ σ (8) - hyp.4 + hyp.6 + (3) + (6)

– (σf ≤ σ ∨ σ′
f ≤ σ)⇒ (vf ∼β′ v′f ∧ σf t σ′

f ≤ σ) (9) - (8)

[Function Call] Suppose that e = e0(e1) (hyp.5). We conclude that:

– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 (1) - hyp.2 + hyp.5
– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1, v1, Γ1, Σ1, σ1〉 (2) - hyp.2 + hyp.5
– r′, σpc ` 〈µ′, e0, Γ

′, Σ′〉 ⇓IF 〈µ′
0, r

′
0, Γ

′
0, Σ

′
0, σ

′
0〉 (3) - hyp.3 + hyp.5

– r′, σpc ` 〈µ′
0, e1, Γ

′
0, Σ

′
0〉 ⇓IF 〈µ′

1, v
′
1, Γ

′
1, Σ

′
1, σ

′
1〉 (4) - hyp.3 + hyp.5

– µ0, Γ0, Σ0 ≈β′,σ µ′
0, Γ

′
0, Σ

′
0, for some β′ extending β (5) - hyp.1 + (1) + (3) + ih

– (σ0 ≤ σ ∨ σ′
0 ≤ σ)⇒ (r0 ∼β′ r′0 ∧ σ0 t σ′

0 ≤ σ) (6) - hyp.1 + (1) + (3) + ih
– µ1, Γ1, Σ1 ≈β′′,σ µ′

1, Γ
′
1, Σ

′
1, for some β′′ extending β′ (7) - (2) + (4) + (5) + ih

– (σ1 ≤ σ ∨ σ′
1 ≤ σ)⇒ (v1 ∼β′′ v′1 ∧ σ1 t σ′

1 ≤ σ) (8) - (2) + (4) + (5) + ih

– 〈µ1, Γ1, Σ1, r0, v1,#glob, σ0, σ1〉 RNewScope 〈µ̂, ê, Γ̂ , Σ̂, r̂, σ̂pc〉 (9) - hyp.2 + hyp.5
– r̂, σ̂pc ` 〈µ̂, ê, Γ̂ , Σ̂〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉 (10) - hyp.2 + hyp.5
– 〈µ′

1, Γ
′
1, Σ

′
1, r

′
0, v

′
1,#glob, σ

′
0, σ

′
1〉 RNewScope 〈µ̂′, ê′, Γ̂ ′, Σ̂′, r̂′, σ̂′

pc〉
(11) - hyp.3 + hyp.5

– r̂′, σ̂′
pc ` 〈µ̂′, ê′, Γ̂ ′, Σ̂′〉 ⇓IF 〈µ′

f , v
′
f , Γ

′
f , Σ

′
f , σ

′
f 〉 (12) - hyp.3 + hyp.5

We consider two distinct cases: σ0 ≤ σ and σ0 6≤ σ.
Suppose that σ0 ≤ σ (hyp.6):

– σ0 t σ′
0 ≤ σ and r0 ∼β′′ r′0 (13) - hyp.6 + (6)

– µ̂, Γ̂ , Σ̂ ≈β′′′,σ µ̂′, Γ̂ ′, Σ̂′, ê = ê′, σ̂′
pc = σ̂pc = σ0 = σ′

0 ≤ σ
for some β′′′ extending β′′ (14) - (6) - (9) + (11) + (13) + Visible Scope All.

– µf , Γf , Σf ≈β′′′,σ µ′
f , Γ

′
f , Σ

′
f and (σf ≤ σ ∨ σ′

f ≤ σ)⇒ (vf ∼β′′′′ v′f ∧ σf t σ′
f ≤ σ)

(15) - (10) + (12) + (14) + ih

Suppose that σ0 6≤ σ (hyp.6):

– σ′
0 6≤ σ (16) - hyp.6 + (6)

– µ1, Γ1, Σ1 ≈id,σ µ̂, Γ̂ , Σ̂ and σ̂pc 6≤ σ (17) - hyp.6 + (9) + Invisible Scope All.
– µ′

1, Γ
′
1, Σ

′
1 ≈id,σ µ̂′, Γ̂ ′, Σ̂′ and σ̂′

pc 6≤ σ (18) - (11) + Invisible Scope All.

– µ̂, Γ̂ , Σ̂ ≈id,σ µf , Γf , Σf (19) - (10) + (17) + Confinement
– µ̂′, Γ̂ ′, Σ̂′ ≈id,σ µ′

f , Γ
′
f , Σ

′
f (20) - (12) + (18) + Confinement

– µ1, Γ1, Σ1 ≈id,σ µf , Γf , Σf (21) - (17) + (19) + Transtivity of ≈id,σ
– µ′

1, Γ
′
1, Σ

′
1 ≈id,σ µ′

f , Γ
′
f , Σ

′
f (22) - (18) + (20) + Transtivity of ≈id,σ

– µf , Γf , Σf ≈β′′,σ µ′
f , Γ

′
f , Σ

′
f (23) - (7) + (21) + (22) + Lateral Transtivity of ≈β,σ

– σ̂pc ≤ σf and σ̂′
pc ≤ σ′

f (24) - (10) + (12) + σpc-Conservation
– σf 6≤ σ and σ′

f 6≤ σ (25) - (17) + (18) + (24)
– (σf ≤ σ ∨ σ′

f ≤ σ)⇒ (vf ∼β′′′′ v′f ∧ σf t σ′
f ≤ σ) (26) - (25)

[Method Call] Suppose that e = e0[e1](e2) (hyp.5). We conclude that:

– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, r0, Γ0, Σ0, σ0〉 (1) - hyp.2 + hyp.5
– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µ1,m1, Γ1, Σ1, σ1〉 (2) - hyp.2 + hyp.5

– r, σpc ` 〈µ1, e2, Γ1, Σ1〉 ⇓IF 〈µ2, v2, Γ2, Σ2, σ2〉 (3) - hyp.2 + hyp.5
– r′, σpc ` 〈µ′, e0, Γ

′, Σ′〉 ⇓IF 〈µ′
0, r

′
0, Γ

′
0, Σ

′
0, σ

′
0〉 (4) - hyp.3 + hyp.5

– r′, σpc ` 〈µ′
0, e1, Γ

′
0, Σ

′
0〉 ⇓IF 〈µ′

1,m
′
1, Γ

′
1, Σ

′
1, σ

′
1〉 (5) - hyp.3 + hyp.5

– r′, σpc ` 〈µ′
1, e2, Γ

′
1, Σ

′
1〉 ⇓IF 〈µ′

2, v
′
2, Γ

′
2, Σ

′
2, σ

′
2〉 (6) - hyp.3 + hyp.5

– µ0, Γ0, Σ0 ≈β0,σ µ′
0, Γ

′
0, Σ

′
0, for some β0 extending β (7) - hyp.1 + (1) + (4) + ih

– (σ0 ≤ σ ∨ σ′
0 ≤ σ)⇒ (r0 ∼β0 r′0 ∧ σ0 t σ′

0 ≤ σ) (8) - hyp.1 + (1) + (4) + ih
– µ1, Γ1, Σ1 ≈β1,σ µ′

1, Γ
′
1, Σ

′
1, for some β1 extending β′ (9) - (2) + (5) + (7) + ih

– (σ1 ≤ σ ∨ σ′
1 ≤ σ)⇒ (m1 = m′

1 ∧ σ1 t σ′
1 ≤ σ) (10) - (2) + (5) + (7) + ih

– µ2, Γ2, Σ2 ≈β2,σ µ′
2, Γ

′
2, Σ

′
2, for some β2 extending β′ (11) - (3) + (6) + (9) + ih

– (σ2 ≤ σ ∨ σ′
2 ≤ σ)⇒ (v2 ∼β2 v′2 ∧ σ2 t σ′

2 ≤ σ) (12) - (3) + (6) + (9) + ih
– 〈µ2, r0,m1, Γ2, Σ2〉 RProto 〈rm, σm〉 and rf = µ2(rm)(m1) (13) - hyp.2 + hyp.5
– 〈µ′

2, r
′
0,m

′
1, Γ

′
2, Σ

′
2〉 RProto 〈r′m, σ′

m〉 and r′f = µ′
2(r′m)(m′

1) (14) - hyp.3 + hyp.5

– 〈µ2, Γ2, Σ2, rf , v2, r0, σ0 t σ1 t Γ2(rm)(m1) t σm, σ2〉 RNewScope 〈µ̂, ê, Γ̂ , Σ̂, r̂, σ̂pc〉
(15) - hyp.2 + hyp.5

– r̂, σ̂pc ` 〈µ̂, ê, Γ̂ , Σ̂〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉 (16) - hyp.2 + hyp.5
– 〈µ′

2, Γ
′
2, Σ

′
2, r

′
f , v

′
2, r

′
0, σ

′
0tσ′

1tΓ ′
2(r′m)(m′

1)tσ′
m, σ

′
2〉 RNewScope 〈µ̂′, ê′, Γ̂ ′, Σ̂′, r̂′, σ̂′

pc〉
(17) - hyp.3 + hyp.5

– r̂′, σ̂′
pc ` 〈µ̂′, ê′, Γ̂ ′, Σ̂′〉 ⇓IF 〈µ′

f , v
′
f , Γ

′
f , Σ

′
f , σ

′
f 〉 (18) - hyp.3 + hyp.5

We consider two distinct cases: σ0tσ1tΓ2(rm)(m1)tσm ≤ σ and σ0tσ1tΓ2(rm)(m1)t
σm 6≤ σ. Suppose that σ0 t σ1 t Γ2(rm)(m1) t σm ≤ σ (hyp.6):

– r0 ∼β0 r′0 ∧ σ0 t σ′
0 ≤ σ (19) - hyp.6 + (8)

– m1 = m′
1 ∧ σ1 t σ′

1 ≤ σ (20) - hyp.6 + (10)
– rm ∼β2 r′m ∧ σm t σ′

m ≤ σ (21) - hyp.6 + (11) + (13) + (14) + (19) + (20) +
– rf ∼β2 r′f ∧ Γ2(rm)(m1) t Γ ′

2(r′m)(m1) ≤ σ
(22) - hyp.6 + (11) + (13) + (14) + (21)

– σ̂′
pc = σ̂pc ≤ σ (23) - hyp.6 + (19) - (22)

– µ̂, Γ̂ , Σ̂ ≈β̂,σ µ̂
′, Γ̂ ′, Σ̂′ and ê = ê′ for some β̂ extending β2

(24) - (11) + (12) + (15) + (17) + (19) + (22) + (23) + Visible Scope All.
– µf , Γf , Σf ≈β′′′,σ µ′

f , Γ
′
f , Σ

′
f and (σf ≤ σ ∨ σ′

f ≤ σ)⇒ (vf ∼β′′′′ v′f ∧ σf t σ′
f ≤ σ)

(25) - (16) + (18) + (24) + ih

Suppose that σ0 t σ1 t Γ2(rm)(m1) t σm 6≤ σ (hyp.6):

– σ′
0 t σ′

1 t Γ ′
2(r′m)(m′

1) t σ′
m 6≤ σ (26) - Multiple steps

– σ̂pc 6≤ σ and σ̂′
pc 6≤ σ (27) - hyp.6 + (26)

– µ2, Γ2, Σ2 ≈id,σ µ̂, Γ̂ , Σ̂ (28) - (15) + (27) + Invisible Scope All.
– µ′

2, Γ
′
2, Σ

′
2 ≈id,σ µ̂′, Γ̂ ′, Σ̂′ (29) - (17) + (27) + Invisible Scope All.

– µ̂, Γ̂ , Σ̂ ≈id,σ µf , Γf , Σf (30) - (16) + (27) + Confinement
– µ̂′, Γ̂ ′, Σ̂′ ≈id,σ µ′

f , Γ
′
f , Σ

′
f (31) - (18) + (27) + Confinement

– µ2, Γ2, Σ2 ≈id,σ µf , Γf , Σf (32) - (28) + (30) + Transtivity of ≈id,σ
– µ′

2, Γ
′
2, Σ

′
2 ≈id,σ µ′

f , Γ
′
f , Σ

′
f (33) - (29) + (31) + Transtivity of ≈id,σ

– µf , Γf , Σf ≈β′′,σ µ′
f , Γ

′
f , Σ

′
f

(34) - (11) + (32) + (33) + Lateral Transtivity of ≈β,σ
– σ̂pc ≤ σf and σ̂′

pc ≤ σ′
f (35) - (16) + (18) + σpc-Conservation

– σf 6≤ σ and σ′
f 6≤ σ (36) - (27) + (35)

– (σf ≤ σ ∨ σ′
f ≤ σ)⇒ (vf ∼β′′′′ v′f ∧ σf t σ′

f ≤ σ) (37) - (36)

[Sequence] Suppose that e = e0, e1 (hyp.5). We conclude that:

– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, v0, Γ0, Σ0, σ0〉 (1) - hyp.2 + hyp.5
– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉 (2) - hyp.2 + hyp.5
– r′, σpc ` 〈µ′, e0, Γ

′, Σ′〉 ⇓IF 〈µ′
0, v

′
0, Γ

′
0, Σ

′
0, σ

′
0〉 (3) - hyp.3 + hyp.5

– r′, σpc ` 〈µ′
0, e1, Γ

′
0, Σ

′
0〉 ⇓IF 〈µ′

f , v
′
f , Γ

′
f , Σ

′
f , σ

′
f 〉 (4) - hyp.3 + hyp.5

– µ0, Γ0, Σ0 ≈β0,σ µ′
0, Γ

′
0, Σ

′
0, for some β0 extending β (5) - hyp.1 + (1) + (3) + ih

– µf , Γf , Σf ≈βf ,σ µ
′
f , Γ

′
f , Σ

′
f , for some βf extending β0 and (σf ≤ σ ∨ σ′

f ≤ σ) ⇒
(vf ∼βf v

′
f ∧ σf t σ′

f ≤ σ) (6) - (2) + (4) + (5) + ih

[Conditional] Suppose that e = ê ? (e0) : (e1) (hyp.5). We conclude that:

– r, σpc ` 〈µ, ê, Γ,Σ〉 ⇓IF 〈µ̂, v̂, Γ̂ , Σ̂, σ̂〉 (1) - hyp.2 + hyp.5
– r, σpc t σ̂ ` 〈µ̂, ei, Γ̂ , Σ̂〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉 (2) - hyp.2 + hyp.5
– v̂ 6∈ Vf ⇒ i = 0 ∧ v̂ 6∈ Vf ⇒ i = 1 (3) - hyp.2 + hyp.5
– r′, σpc ` 〈µ′, ê, Γ ′, Σ′〉 ⇓IF 〈µ̂′, v̂′, Γ̂ ′, Σ̂′, σ̂′〉 (4) - hyp.3 + hyp.5
– r′, σpc t σ̂′ ` 〈µ̂′, ej , Γ̂

′, Σ̂′〉 ⇓IF 〈µ′
f , v

′
f , Γ

′
f , Σ

′
f , σ

′
f 〉 (5) - hyp.3 + hyp.5

– v̂′ 6∈ Vf ⇒ j = 0 ∧ v̂′ 6∈ Vf ⇒ j = 1 (6) - hyp.3 + hyp.5
– µ̂, Γ̂ , Σ̂ ≈β̂,σ µ̂′, Γ̂ ′, Σ̂′ for some β̂ extending β and (σ̂ ≤ σ ∨ σ̂′ ≤ σ) ⇒ (v̂ ∼β̂
v̂′ ∧ σ̂ t σ̂′ ≤ σ) (7) - hyp.1 + (1) + (4) + ih

Without loss of generality, we assume i = 0 (hyp.6) (the case i = 1 is symmetric). We
proceed by case analysis. Suppose that σ̂ ≤ σ (hyp.7). We conclude:

– v̂ ∼β̂ v̂
′ ∧ σ̂ t σ̂′ ≤ σ (8) - hyp.7 + (7)

– j = 0 (9) - hyp.6 + (8)
– µf , Γf , Σf ≈βf ,σ µ

′
f , Γ

′
f , Σ

′
f for some βf extending β̂ and (σf ≤ σ ∨ σ′

f ≤ σ) ⇒
(vf ∼βf v

′
f ∧ σf t σ′

f ≤ σ) (10) - hyp.6 + (2) + (4) + (7) + (9) + ih

Suppose that σ̂ 6≤ σ (hyp.7). We conclude:

– σ̂′ 6≤ σ (11) - hyp.7 + (7)
– µ̂, Γ̂ , Σ̂ ≈id,σ µf , Γf , Σf (12) - hyp.7 + (2) + Confinement
– µ̂′, Γ̂ ′, Σ̂′ ≈id,σ µ′

f , Γ
′
f , Σ

′
f (13) - (5) + (11) + Confinement

– µf , Γf , Σf ≈β̂,σ µ
′
f , Γ

′
f , Σ

′
f

(14) - (7) + (12) + (13) + Lateral Transitivity of ≈β,σ
– σ̂ ≤ σf and σ̂′ ≤ σ′

f (15) - (2) + (5) + σpc-Conservation
– σf 6≤ σ and σ′

f 6≤ σ (16) - hyp.7 + (11) + (15)
– (σf ≤ σ ∨ σ′

f ≤ σ)⇒ (vf ∼β̂ v
′
f ∧ σf t σ′

f ≤ σ) (17) - (16)

B Proofs of Section 3

Lemma 17 (Scope-Chain Indistinguishability). Given a function β, two
memories µ and µ′, and a labeling 〈Γ,Σ〉 s.t. 〈µ, Γ,Σ〉 Sβ µ′. Then, for any refer-
ence r ∈ dom(β) and identifier x, 〈µ, r, x〉 RScope rx iff 〈µ′, β(r), x〉 RScope β(rx).

Lemma 18 (Prototype-Chain Indistinguishability). Given a function β,
two memories µ and µ′, and a labeling 〈Γ,Σ〉 s.t. 〈µ, Γ,Σ〉 Sβ µ′. Then, for any
two references r, r′ ∈ dom(β), property p, and security level σ, 〈µ, r, p, Γ,Σ〉Rproto
〈r′, σ〉 iff 〈µ′, β(r), p〉 RProto β(r′).

Lemma 19 (Correctness). Provided that e does not use identifiers in IC ,
for any labeled and instrumented configurations 〈µ, e, Γ,Σ〉 and 〈µ′, e′〉, func-
tion β, and reference r in µ, such that 〈µ, Γ,Σ〉 Sβ µ′, C〈e〉 = 〈e′, i〉, and
σpc = µ′(β(r))($pc), for some index i; there exists 〈µf , vf , Γf , σ〉 such that
r, σpc ` 〈µ, e, Γ,Σ〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉 iff there exists 〈µ′f , v′f 〉 such that
β(r) ` 〈〈µ′, e′〉〉 ⇓ 〈〈µ′f , v′f 〉〉, in which case the following statements hold: (1)

〈µf , Γf , Σf 〉 Sβ′ µ′f , (2) vf ∼C(β) v′f , (3) v′f = µ′
f (β(r))($v̂i), (4) σf = µ′

f (β(r))($l̂i),
and (5) σpc = µ′

f (β(r))($pc).

Proof. In order to prove the claim, we have to prove both sides of the equivalence.

Since the proof is analogous, we choose to prove the right-to-left implication, which im-

mediately implies security. Hence, assuming that: β(r) ` 〈〈µ′, e′〉〉 ⇓ 〈〈µ′
f , v

′
f 〉〉 (hyp.1),

〈µ, Γ,Σ〉 Sβ µ′ (hyp.2), C〈e〉 = 〈e′, i〉 (hyp.3), and σpc = µ′(β(r))($pc) (hyp.4), we

need to show that: r, σpc ` 〈µ, e, Γ,Σ〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉, 〈µf , Γf , Σf 〉 Sβ′ µ′
f ,

vf ∼C(β) v
′
f , v′f = µ′

f (β(r))($v̂i), σf = µ′
f (β(r))($l̂i), and σpc = µ′

f (β(r))($pc). The

proof proceeds by induction on the derivation of hyp.1. In the following let r′ = β(r).

[Value] Suppose that e = vi (hyp.5). We conclude that:

– e′ = $l̂i = $pc, $v̂i = v (1) - hyp.3 + hyp.5
– µf = µ, Γf = Γ , Σf = Σ, vf = v, and σf = σpc (2) - hyp.5

– µ′
f = µ′

[
r′ 7→ µ′(r′)

[
$v̂i 7→ v, $l̂i 7→ σpc

]]
, v′f = v (3) - hyp.1 + hyp.5

– 〈µf , Γf , Σf 〉 Sβ µ′
f , vf ∼C(β) v

′
f , v′f = µ′

f (β(r))($v̂i), and σf = µ′
f (β(r))($l̂i).

(4) - hyp.2 + hyp.4 + (2) + (3)
– σpc = µ′

f (r′)($pc) (5) - hyp.4 + (3)

[This] Suppose that e = thisi (hyp.5). We conclude that:

– e′ = $l̂i = $pc, $v̂i = this (1) - hyp.3 + hyp.5
– µf = µ, Γf = Γ , Σf = Σ, vf = µ(r)(@this), and σf = Γ (r)(@this) t σpc

(2) - hyp.5

– µ′
f = µ′

[
r′ 7→ µ′(r′)

[
$v̂i 7→ v′f , $l̂i 7→ σpc

]]
, v′f = µ(r)(@this) (3) - hyp.1 + hyp.5

– 〈µf , Γf , Σf 〉 Sβ µ′
f , vf ∼C(β) v

′
f , and v′f = µ′

f (β(r))($v̂i)
(4) - hyp.2 + (2) + (3)

– Γ (r)(@this) ≤ σpc (5) - this-Invariant
– σf = µ′

f (β(r))($l̂i) (6) - hyp.4 + (2) + (3)
– σpc = µ′

f (r′)($pc) (7) - hyp.4 + (3)

[Variable] Suppose that e = xi (hyp.5). We conclude that:

– e′ = $l̂i = $pc t $lx, $v̂i = x (1) - hyp.3 + hyp.5
– 〈µ′, r′, x〉 RScope r′x, r′x 6= null, v′f = µ′(r′x)(x) (2) - hyp.1 + hyp.5
– 〈µ′, r′, $lx〉 RScope r′x, σ′

f = µ′(r′x)($lx) t σpc (3) - hyp.1 + hyp.5

– µ′
f = µ′

[
r′ 7→ µ′(r′)

[
$v̂i 7→ v′f , $l̂i 7→ σ′

f

]]
(4) - hyp.1 + hyp.5

– 〈µ, r, x〉 RScope rx, rx 6= null, and rx ∼C(β) r
′
x

(5) - hyp.2 + (2) + Scope Indistinguishability
– µf = µ, Γf = Γ , Σf = Σ, vf = µ(rx)(x), σf = Γ (rx)(x) t σpc (6) - hyp.5 + (5)

– vf ∼C(β) v
′
f and σf = σ′

f (7) - hyp.2 + (2) + (3) + (5) + (6)
– 〈µf , Γf , Σf 〉 Sβ µ′

f , (8) - hyp.2 + (4) + (6)

– vf ∼C(β) v
′
f , v′f = µ′

f (r′)($v̂i), and σf = µ′
f (r′)($l̂i).

(9) - hyp.2 + (4) + (6) + (7)
– σpc = µ′

f (r′)($pc) (10) - hyp.4 + (4)

[Binary Operation] Suppose that e0 opi e1 (hyp.5). We conclude that:

– e′ = e′0, e
′
1, $l̂i = $l̂j t $l̂k, $v̂i = $v̂j op $v̂k, where: C〈e0〉 = 〈e′0, j〉 and C〈e1〉 =

〈e′1, k〉 (1) - hyp.3 + hyp.5
– r′ ` 〈〈µ′, e′0〉〉 ⇓ 〈〈µ′

0, v
′
0〉〉 and r′ ` 〈〈µ′

1, e
′
1〉〉 ⇓ 〈〈µ′

1, v
′
1〉〉

(2) - hyp.1 + hyp.3 + hyp.5 + (1)
– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, v0, Γ0, Σ0, σ0〉, 〈µ0, Γ0, Σ0〉 Sβ0 µ′

0, v0 ∼C(β0) v
′
0,

v′0 = µ′
0(r′)($v̂j), and σ0 = µ′

0(r′)($l̂j), and σpc = µ′
0(r′)($pc)

(3) - hyp.2 + hyp.4 + (1) + (2) + ih
– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µf , v1, Γf , Σf , σ1〉, 〈µf , Γf , Σf 〉 Sβ1 µ′

1, v1 ∼C(β0) v
′
1,

v′1 = µ′
1(r′)($v̂k), σ1 = µ′

1(r′)($l̂k), and σpc = µ′
1(r′)($pc)

(4) - hyp.4 + (1)-(3) + ih
– σf = σ0 t σ1, σ′

f = µ′(r′x)($lx) t σpc, vf = v0 op v1, and v′f = v′0 op v′1
(5) - hyp.1 + hyp.3 + hyp.5 + (3) + (4)

– µ′
f = µ′

[
r′ 7→ µ′(r′)

[
$v̂i 7→ v′f , $l̂i 7→ σ′

f

]]
(6) - hyp.1 + hyp.5 + (5)

– 〈µf , Γf , Σf 〉 Sβ1 µ′
f (7) - (4) + (6)

– vf ∼C(β1) v
′
f , v′f = µ′

f (r′)($v̂i), and σf = µ′
f (r′)($l̂i)

(8) - hyp.2 + (4) + (6) + (7)
– σpc = µ′

f (r′)($pc) (9) - hyp.4 + (4)

[Variable Assignment] Suppose that x = e0 (hyp.5). We conclude that:

– e′ = e′0, $check($pc ≤ $lx), $lx = $l̂i, x = $v̂i, where: x 6∈ IC and C〈e0〉 = 〈e′0, i〉
(1) - hyp.3 + hyp.5

– r′ ` 〈〈µ′, e′0〉〉 ⇓ 〈〈µ′
0, v

′
0〉〉 (2) - hyp.1 + hyp.3 + hyp.5 + (1)

– 〈µ′
0, r

′, x〉 RScope r′x, r′x 6= null, 〈µ′, r′, $lx〉 RScope r′x (3) - hyp.1 + hyp.5
– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, v0, Γ0, Σ0, σ0〉, 〈µ0, Γ0, Σ0〉 Sβ0 µ′

0, v0 ∼C(β0) v
′
0,

v′0 = µ′
0(r′)($v̂i), and σ0 = µ′

0(r′)($l̂i), and σpc = µ′
0(r′)($pc)

(4) - hyp.2 + hyp.4 + (1) + (2) + ih
– σ′

f = σ′
0, v′f = v′0, µ′

0(r′)($pc) ≤ µ′
0(r′x)($lx)

(5) - hyp.1 + hyp.3 + hyp.4 + hyp.5

– µ′
f = µ′

[
r′ 7→ µ′(r′)

[
$v̂i 7→ v′f , $l̂i 7→ σ′

f

]
, r′x 7→ µ′(r′x)

[
x 7→ v′f , $lx 7→ σf

]]
(6) - hyp.1 + hyp.4 + hyp.5 + (4)

– 〈µ0, r, x〉 RScope rx, rx 6= null, and rx ∼C(β) r
′
x

(7) - (4) + Scope Indistinguishability
– σpc ≤ Γ0(rx)(x) (8) - (4) + (5) + (7)
– Γf = Γ0 [rx 7→ Γ0(rx) [x 7→ σ0]], µf = µ0 [rx 7→ µ0(rx) [x 7→ v0]], vf = v0, and σf =
σ0 (9) - hyp.5 + (4) + (8)

– 〈µf , Γf , Σf 〉 Sβ1 µ′
f (10) - (4) + (6) + (9)

– vf ∼C(β1) v
′
f , σf = σ′

f , v′f = µ′
f (r′)($v̂i), and σf = µ′

f (r′)($l̂i)
(11) - hyp.2 + (4) + (6) + (7)

– σpc = µ′
f (r′)($pc) (12) - hyp.4 + (4)

[Sequence] Suppose that e0, e1 (hyp.5). We conclude that:

– e′ = e′0, e
′
1 where: C〈e0〉 = 〈e′0, j〉 and C〈e1〉 = 〈e′1, k〉 (1) - hyp.3 + hyp.5

– r′ ` 〈〈µ′, e′0〉〉 ⇓ 〈〈µ′
0, v

′
0〉〉 and r′ ` 〈〈µ′

0, e
′
1〉〉 ⇓ 〈〈µ′

f , v
′
f 〉〉

(2) - hyp.1 + hyp.3 + hyp.5 + (1)
– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, v0, Γ0, Σ0, σ0〉, 〈µ0, Γ0, Σ0〉 Sβ0 µ′

0, v0 ∼C(β0) v
′
0,

v′0 = µ′
0(r′)($v̂j), σ0 = µ′

0(r′)($l̂j), and σpc = µ′
0(r′)($pc)

(3) - hyp.2 + hyp.4 + (1) + (2) + ih
– r, σpc ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉, 〈µf , Γf , Σf 〉 Sβf µ

′
1, vf ∼C(βf) v

′
f ,

v′f = µ′
f (r′)($v̂k), σf = µ′

f (r′)($l̂k), and σpc = µ′
f (r′)($pc)

(4) - hyp.4 + (1)-(3) + ih

[Conditional] Suppose that e = e0 ?s,t (e1) : (e2) (hyp.5). We conclude that:

– e′ = e′0, $l̂s = $pc, $pc = $pc t $l̂i, econd, $pc = $l̂s, $v̂t where: C〈e0〉 = 〈e′0, i〉
and C〈e1〉 = 〈e′1, j〉, C〈e2〉 = 〈e′2, k〉, econd = $v̂i ?

(
e′1, $v̂t = $v̂j , $l̂t = $l̂j

)
:(

e′2, $v̂t = $v̂k, $l̂t = $l̂k
)

(1) - hyp.3 + hyp.5

– r′ ` 〈〈µ′, e′0〉〉 ⇓ 〈〈µ′
0, v

′
0〉〉 (2) - hyp.1 + hyp.3 + hyp.5

– r, σpc ` 〈µ, e0, Γ,Σ〉 ⇓IF 〈µ0, v0, Γ0, Σ0, σ0〉, 〈µ0, Γ0, Σ0〉 Sβ0 µ′
0, v0 ∼C(β0) v

′
0,

v′0 = µ′
0(r′)($v̂i), σ0 = µ′

0(r′)($l̂i), and σpc = µ′
0(r′)($pc)

(3) - hyp.2 + hyp.4 + (1) + (2) + ih

We assume without loss of generality that v′0 6∈ Vf (hyp.6). It follows that:

– µ′′
0 = µ′

0 [r′ 7→ µ′
0(r′) [$v̂s 7→ σpc, $pc 7→ σpc t σ0]]

(4) - hyp.1 + hyp.3 + hyp.4 + (1) + (3)
– r′ ` 〈〈µ′′

0 , e
′
1〉〉 ⇓ 〈〈µ′

1, v
′
f 〉〉 (5) - hyp.1 + hyp.3 + hyp.4 + (1) + (3)

– v0 6∈ Vf (6) - hyp.6 + (3)
– 〈µ0, Γ0, Σ0〉 Sβf µ

′
1 (7) - (3) + (4) + Preservation of Memory Similarity

– r, σpctσ0 ` 〈µ0, e1, Γ0, Σ0〉 ⇓IF 〈µf , vf , Γf , Σf , σf 〉, 〈µf , Γf , Σf 〉 Sβf µ
′
1, vf ∼C(βf)

v′f , v′f = µ′′
0 (r′)($v̂j), and σf = µ′

1(r′)($l̂j) (8) - hyp.4 + hyp.5 + (5) + (7) + ih

– µ′
f = µ′

1

[
r′ 7→ µ′

1(r′)
[
$v̂t 7→ v′f , $l̂t 7→ σf , $pc 7→ σpc

]]
(9) - hyp.5 + (1)

– 〈µf , Γf , Σf 〉 Sβf µ
′
f (10) - (7) + (9) + Preservation of Memory Similarity

[Object Literal] Suppose that e = {}i (hyp.5). We conclude that:

– e′ = $v̂i = {}, $v̂i.$struct = $pc, $v̂i.$lproto = $pc, $l̂i = $pc, $v̂i
(1) - hyp.3 + hyp.5

– µf = µ [ro 7→ [prot 7→ null]], Γf = Γ [ro 7→ [prot 7→ σpc]], Σ
′ = Σ [ro 7→ σpc],

ro 6∈ dom(µ), vf = ro, and σf = σpc (2) - hyp.5
– µ′f = µ′

[
r′o 7→ [prot 7→ null, $lproto 7→ σpc, $struct 7→ σpc] , r

′ 7→
[
$v̂i 7→ r′o, $l̂i 7→ σpc

]]
,

r′o 6∈ dom(µ′), v′f = r′o (3) - hyp.5
– σpc = µ′

f (r′)($pc) (4) - hyp.4 + (3)

Making βo = β [ro 7→ r′o] (hyp.6). We conclude that:

– 〈µf , Γf , Σf 〉 Sβo µ′
f , vf ∼C(βo) v

′
f , v′f = µ′

f (β(r))($v̂i), and σf = µ′
f (β(r))($l̂i).

(5) - hyp.2 + hyp.4 + hyp.6 + (2) + (3)

[Function Literal] Suppose that e = functioni(x){var y1, · · · , yn; ê} (hyp.5).
We conclude that:

– e′ = $v̂i = {}, $v̂i.$struct = $pc, $v̂i.$lproto = $pc, $l̂i = $pc, $v̂i
(1) - hyp.3 + hyp.5

– µf = µ [rf 7→ [@fscope 7→ r,@code 7→ λx. {var y1, · · · , yn; ê}]],
Γf = Γ [rf 7→ [@fscope 7→ σpc,@code 7→ σpc]], Σf = Σ [ro 7→ σpc],
rf 6∈ dom(µ), vf = rf , and σf = σpc (2) - hyp.5

– µ′f = µ′

[
r′f 7→ [$struct 7→ σpc,@fscope 7→ r,@code 7→ λx. {var y1, · · · , yn; ê}]
r′ 7→

[
$v̂i 7→ r′f , $l̂i 7→ σpc

]]
, r′f 6∈ dom(µ′),

v′f = r′o (3) - hyp.5
– σpc = µ′

f (r′)($pc) (4) - hyp.4 + (3)

Making βf = β
[
rf 7→ r′f

]
(hyp.6). We conclude that:

– 〈µf , Γf , Σf 〉 Sβo µ′
f , vf ∼C(βo) v

′
f , v′f = µ′

f (β(r))($v̂i), and σf = µ′
f (β(r))($l̂i).

(5) - hyp.2 + hyp.4 + hyp.6 + (2) + (3)

The remaining cases are handled analogously.

