
Modular Monitor Extensions for Information Flow
Security in JavaScript
José Fragoso Santos1, Tamara Rezk2, and Ana Almeida Matos3

1 Imperial College London
jose.fragoso.santos@imperial.ac.uk

2 Inria
tamara.rezk@inria.fr

3 University of Lisbon, SQIG-Instituto de Telecomunicações
ana.matos@ist.utl.pt

Abstract
Client-side JavaScript programs often interact with the web page into which they are included,
as well as with the browser itself, through APIs such as the DOM API, the XMLHttpRequest
API, and the W3C Geolocation API. Precise reasoning about JavaScript security must therefore
take API invocation into account. However, the continuous emergence of new APIs, and the het-
erogeneity of their forms and features, renders API behavior a moving target that is particularly
hard to capture. To tackle this problem, we propose a methodology for modularly extending
sound JavaScript information flow monitors with a generic API. Hence, to verify whether an
extended monitor complies with the proposed noninterference property requires only to prove
that the API satisfies a predefined set of conditions. In order to illustrate the practicality of our
methodology, we show how an information flow monitor-inlining compiler can take into account
the invocation of arbitrary APIs, without changing the code or the proofs of the original compiler.
We provide an implementation of such a compiler with an extension for handling a fragment of
the DOM Core Level 1 API. Furthermore, our implementation supports the addition of monitor
extensions for new APIs at runtime.

1 Introduction

Isolation properties guarantee protection for trusted JavaScript code from malicious code.
The noninterference property [9] provides the mathematical foundations for reasoning pre-
cisely about isolation. In particular, noninterference properties guarantee absence of flows
from confidential/untrusted resources to public/trusted ones.

Although JavaScript can be used as a general-purpose programming language, many
JavaScript programs are designed to be executed in a browser in the context of a web page.
Such programs often interact with the web page in which they are included, as well as with
the browser itself, through Application Programming Interfaces (APIs). Some APIs are fully
implemented in JavaScript, whereas others are built with a mix of different technologies,
which can be exploited to conceal sophisticated security violations. Thus, understanding
the behavior of client-side web applications, as well as proving their compliance with a given
security policy, requires cross-language reasoning. The size, complexity, and number of com-
monly used APIs poses an important challenge to any attempt at formally reasoning about
the security of JavaScript programs [13]. To tackle this problem, we propose a methodology
for extending JavaScript monitored semantics. This methodology allows us to verify whether
a monitor complies with the proposed noninterference property in a modular way. Thus,
we make it possible to prove that a security monitor is still noninterferent when extending
it with a new API, without having to revisit the whole model. Generally, an API can be
viewed as a particular set of specifications that a program can follow to make use of the

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Modular Monitor Extensions for Information Flow Security in JavaScript

resources provided by another particular application. For client-side JavaScript programs,
this definition of API applies both to: (1) interfaces of services that are provided to the
program by the environment in which it executes, namely the web browser (for instance, the
DOM, the XMLHttpRequest, and the W3C Geolocation APIs); (2) interfaces of JavaScript
libraries that are explicitly included by the programmer (for instance, jQuery, Prototype.js,
and Google Maps Image API). In the context of this work, the main difference between
these two types of APIs is that in the former case their semantics escapes the JavaScript
semantics, whereas in the latter it does not. The methodology proposed here was designed
as a generic way of extending security monitors to deal with the first type of APIs. Never-
theless, we can also apply it to the second type whenever we want to execute the library’s
code in the original JavaScript semantics instead of the monitored semantics.

I Example 1 (Running example: A Queue API). Consider the following API for creating and
manipulating priority queues. The API is available to the programmer through the global
variable queueAPI, and variable queueObj is bound to a concrete queue:

queueAPI.queue(): creates a new priority queue;
queueObj.push(el, priority): adds a new element to the queue;
queueObj.pop(): pops the element with the highest priority.

The method calls from this API cannot be verified by the JavaScript monitor, as we are
assuming that the code of the methods is not available to the JavaScript engine. Further-
more, the specification of the queue API may not obey the JavaScript semantics and hence
prevention of the security leaks may need different constraints.

In order to extend a JavaScript security monitor to control the behavior of this API, one
has to define what we call an API Register to set the security constraints associated to the
corresponding API method calls on queueAPI and queueObj. API method calls should be
implemented as interception points of the monitor semantics and the API Register should
then make the invocation of these methods if the security constraints are satisfied.

The following questions then arise: What constraints must we impose on the new API
register in order to preserve the noninterference guarantees of the JavaScript monitor? Is it
possible to modularly prove noninterference of the extended monitor without revisiting the
whole set of constraints, including those of the JavaScript monitor?

There are two main approaches for implementing a monitored JavaScript semantics:
either one modifies a JavaScript engine so that it also implements the security monitor (as
in [15]), or one inlines the monitor in the original program (as in [16], [8], and [10]). Both
these approaches suffer from the problem of requiring ad-hoc security mechanisms for all
targeted APIs. We show how to extend an information flow monitor-inlining compiler so
that it also takes into account the invocation of APIs. Our extensible compiler requires
each API to be associated with a set of JavaScript methods that we call its IFlow Signature,
which describes how to handle the information flows triggered by its invocation. We provide
a prototype of the compiler, which is available online [20]. A user can easily extend it by
loading new IFlow signatures. Using the compiler, we give realistic examples of how to
prevent common security violations that arise from the interaction between JavaScript and
the DOM API. In a nutshell, the benefit of our approach is that it allows us to separate
the proof of security for each API from the proof of security for the core language. This
separation is, to the best of our knowledge, new and useful as new APIs are continuously
emerging.

The contributions of the paper are: (1) a methodology for extending JavaScript monitors
with API monitoring (Section 3.2), (2) the design of an extensible information flow monitor-
inlining compiler that follows our methodology (Section 4), (3) an implementation [20] of a

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 3

JavaScript information flow monitor-inlining compiler (Section 5) that handles an important
subset of the DOM API and is extensible with new APIs by means of IFlow Signatures.

2 Related Work

We refer the reader to a recent survey [7] on web scripts security and to [19] for a complete
survey on information flow enforcement mechanisms up to 2003, while focusing here on the
most closely related work on dynamic mechanisms for enforcing noninterference.

Flow-sensitive monitors for enforcing noninterference can be divided into purely dynamic
monitors [3–5] and hybrid monitors [12, 22]. While hybrid monitors use static analysis
to reason about untaken execution paths, purely dynamic monitors do not rely on any
kind of static analysis. There are three main strategies in designing sound purely dynamic
information flow monitors. The no-sensitive-upgrade (NSU) strategy [3] forbids the update of
public resources inside private contexts. The permissive-upgrade strategy [4] allows sensitive
upgrades, but forbids programs to branch depending on values upgraded in private contexts.
Finally, themultiple facet strategy [5] makes use of values that appear differently to observers
at different security levels. Here, we show how to extend information flow monitors that
follow the NSU discipline.

Hedin and Sabelfeld [15] are the first to propose a runtime monitor for enforcing non-
interference for JavaScript. The technique that we present for extending security monitors
can be applied to this monitor, which is purely dynamic and follows the NSU discipline.
In [14], the authors implement their monitor as an extended JavaScript interpreter. Their
implementation makes use of the informal concepts of shallow and deep information flow
models in order to cater for the invocation of built-in libraries and DOM API methods.
However, these concepts are not formalised. In fact, our definition of monitored API can be
seen as a formalisation of the notion of deep information flow model for libraries.

Both Chudnov and Naumann [8] and Magazinius et al. [16] propose the inlining of in-
formation flow monitors for simple imperative languages. In [10], we present a compiler that
inlines a purely dynamic information flow monitor for a realistic subset of JavaScript. In
the implementation presented in this paper we extend the inlining compiler of [10] with the
DOM API, applying the methodology proposed here.

Taly et al. [21] study API confinement. They provide a static analysis designed to
verify whether an API may leak its confidential resources. Unlike us, they only target APIs
implemented in JavaScript, whose code is available for either runtime or static analysis.

Russo et al. [18] present an information flow monitor for a WHILE language with prim-
itives for manipulating DOM-like trees and prove it sound. They do not model references.
In [2], we present an information flow monitor for a simple language that models a core of
the DOM API based on the work of Gardner et al. [11]. In contrast to [18], we can handle
references and live collections. Here, we apply the techniques of [2] to develop monitor
extensions for a fragment of the DOM Core Level 1 API [17]. Recent work [23] presents
an information flow monitor for JavaScript extended with the DOM API that also con-
siders event handling loops. To the best of our knowledge, no prior work proposes a generic
methodology to extend JavaScript monitors and inlining compilers with arbitrary web APIs.

3 Modular Extensions for JavaScript Monitors

In this section we show how to extend a noninterferent monitor so that it takes into account
the invocation of web APIs, while preserving the noninterference property.

4 Modular Monitor Extensions for Information Flow Security in JavaScript

3.1 Noninterferent JavaScript Monitors

JavaScript Memory Model. In JavaScript [1], objects can be seen as partial functions
mapping strings to values. The strings in the domain of an object are called its proper-
ties. Memories are mappings from references to objects. In the following, we assume that
memories include a reference to a special object called the global object pointed to by a
fixed reference #glob, that binds global variables. In this presentation, objects, properties,
memories, references and values, are ranged over by o, p, µ, r and v, respectively.

We use the notation [p0 7→ v0, . . . , pn 7→ vn] for the partial function that maps pi to
vi where i = 0, . . . n, and f [p0 7→ v0, . . . , pn 7→ vn] for the function that coincides with f

everywhere except in p0, . . . , pn, which are otherwise mapped to v0, . . . , vn respectively.
Furthermore, we denote by dom(f) the domain of a function f , and by f |P the restriction of
f to P (when P ⊆ dom(f)). Finally, we write f(r)(p) instead of (f(r))(p), the application
of the image of r by function f to p.

Sequences are denoted by stacking an arrow as in −→v , and ε denotes the empty sequence.
The length of −→v is given by |−→v | and · denotes concatenation of sequences.
Security Setting. Information flow policies such as noninterference are specified over security
labelings that assign security levels, taken from a given security lattice, to the observable
resources of a program. In the following, we use a fixed lattice L of security levels ranged
over by σ. We denote by ≤ its order relation, by σ0 t σ1 the least upper bound between
levels σ0 and σ1, and by t~σ the least upper bound of all levels in the sequence ~σ. In the
examples, we consider two security levels {H,L} such that L < H, meaning that resources
labeled with high level H are more confidential than those labeled with low level L.

In our setting, a security labeling is as a pair 〈Γ,Σ〉, where Γ maps references, followed
by properties, to security levels, and Σ maps references to security levels. Then, given an
object o pointed to by a reference r, if defined, Γ(r)(p) corresponds to the security levels
associated with o’s property p, and Σ(r) with o’s domain. The latter, also referred to as o’s
structure security level, controls the observability of the existence of properties [15].

We say that memory µ is well-labeled by 〈Γ,Σ〉 if dom(Γ) = dom(Σ) ⊆ dom(µ) and for
every reference r ∈ dom(Γ), dom(Γ(r)) ⊆ dom(µ(r)).
Security Monitor. JavaScript programs are statements, that include expressions, ranged
over by s and e, respectively. We model an information flow monitor as a small-step se-
mantics relation →IF between configurations of the form 〈µ, s,−→σpc,Γ,Σ,−→σ 〉 composed of (1)
a memory µ (2) a statement s, that is to execute, (3) a sequence of security levels −→σpc, match-
ing the expressions on which the original program branched to reach the current context,
(4) a security labeling 〈Γ,Σ〉, and (5) a sequence of security levels −→σ matching the reading
effects of the subexpressions of the expression being computed.

The reading effect [19] of an expression is defined as the least upper bound on the security
levels of the resources on which the value to which it evaluates depends. Additionally, we
assume that the reading effect of an expression is always higher than or equal to the level
of the context in which it is evaluated, t−→σpc.
Low-equality. In order to account for a non-deterministic memory allocator, we rely on a
partial injective function which relates observable references that point to the same resource
in different executions of the same program [6]. The β relation is extended to relate observ-
able values via the β-equality, which is denoted ∼β : two objects are β-equal if they have
the same domain and all their corresponding properties are β-equal; primitive values and
parsed functions are β-equal if syntactically equal; and, two references r0 and r1 are β-equal
if the latter is the image by β of the former.

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 5

Two memories µ0 and µ1 are said to be low-equal with respect to labelings 〈Γ0,Σ0〉
and 〈Γ1,Σ1〉, a security level σ, and a partial injective function β, written µ0,Γ0,Σ0 ≈β,σ
µ1,Γ1,Σ1, if µ0 and µ1 are well-labeled by 〈Γ0,Σ0〉 and 〈Γ1,Σ1〉 respectively, and for all
references r0, r1 ∈ dom(β), such that r1 = β(r0), the following hold:

1. The observable domains (i.e. set of observable properties) of the objects pointed by r0, r1,
coincide: Pσ = {p ∈ dom(µ0(r0)) | Γ0(r0)(p) ≤ σ} = {p ∈ dom(µ1(r1)) | Γ1(r1)(p) ≤ σ};

2. The objects pointed by r0, r1 coincide in their observable domain: µ0(r0)|P ∼β µ1(r1)|P ;
3. If the structure security level of either object pointed by r0, r1 is observable (Σ0(r0)≤σ

or Σ1(r1)≤σ), then their domains and structure security levels coincide: dom(µ0(r0)) =
dom(µ1(r1)) and Σ0(r0) = Σ1(r1).

We extend informally the definition of low-equality to sequences of labeled values and
to program continuations (the interested reader can find the formal definitions in [20]).
Two sequences of labeled values are low-equal with respect to a given security level σ,
denoted ~v0, ~σ0 ≈β,σ ~v1, ~σ1 if for each position of both sequences, either the two values in that
position are low-equal, or the levels that are associated with both of them are not observable.
Low-equality between program continuations s0,

−−→σpc0,−→σ0 ≈β,σ s1,
−−→σpc1,−→σ1 relaxes syntactic

equality between programs in order to relate the intermediate states of the execution of the
same original program in two low-equal memories, as illustrated by the following example.

I Example 2 (Low-equal program continuations). Consider the program x = y, an initial
labeling 〈Γ,Σ〉 such that Γ(#glob)(x)=Γ(#glob)(y)=H, and two memories µ0 and µ1 such
that µi=[#glob 7→ [x 7→ undefined, y 7→ i]], for i ∈ {0, 1}. The execution of one computation
step of this program in µ0 and µ1 yields the programs x= 0 and x= 1. Since the reading
effects associated with the values 0 and 1 are both H, the expressions x= 0 and x= 1 are
low-equal. Formally: x=0, 〈L〉, 〈H〉 ≈id,L x=1, 〈L〉, 〈H〉 (where id is the identity function).

Finally, two monitor configurations 〈µ0, s0,
−−→σpc0,Γ0,Σ0,

−→σ0〉 and 〈µ1, s1,
−−→σpc1,Γ1,Σ1,

−→σ1〉
are said to be low-equal w.r.t a level σ and function β, written 〈µ0, s0,

−−→σpc0,Γ0,Σ0,
−→σ0〉

≈β,σ 〈µ1, s1,
−−→σpc1,Γ1,Σ1,

−→σ1〉, if µ0,Γ0,Σ0 ≈β,σ µ1,Γ1, σ1 and s0,
−−→σpc0,−→σ0 ≈β,σ s1,

−−→σpc1,−→σ1.
Noninterferent Monitor.

In the remaining of the paper, we consider only noninterferent JavaScript monitors.
As usual, a monitor →IF is noninterferent, written NImon(→IF), if its application on two
low-equal configurations produces two low-equal configurations.

I Definition 3 (Monitor Noninterference). A monitor →IF is said to be noninterferent, writ-
ten NImon(→IF), if for every programs s0, s1, memories µ0, µ1, and labeling 〈Γ,Σ〉, such
that µ0, µ1 are well-labeled by 〈Γ,Σ〉 and, for all security levels σ, there exists β such
that 〈µ0, s0, ε,Γ,Σ, ε〉 ≈β,σ 〈µ1, s1, ε,Γ,Σ, ε〉, if 〈µ0, s0, ε,Γ,Σ, ε〉 →∗IF 〈µ′0, v′0, ε,Γ′,Σ′, σ′〉
and 〈µ1, s1, ε,Γ,Σ, ε〉 →∗IF 〈µ′1, v′1, ε,Γ′,Σ′, σ′〉 then there is an extension β′ of β such that
〈µ′0, v′0, ε,Γ′,Σ′, σ′〉 ≈β,σ 〈µ′1, v′1, ε,Γ′,Σ′, σ′〉.

3.2 API Extensions to JavaScript Monitors

API relation. Even if the execution of certain APIs escapes the JavaScript semantics, the
interaction between JavaScript programs and these APIs is mediated via special API objects
that exist in the JavaScript memory. In the following, we assume that (1) the state of the
API can be fully encoded in a JavaScript memory and (2) the behavior of each API method
only depends on its state. An API is thus modeled as a semantic relation ⇓JS

API of the form
〈µ,−→v 〉 ⇓JS

API 〈µ′, v′〉 where µ is the JavaScript memory in which the API is executed, µ′

6 Modular Monitor Extensions for Information Flow Security in JavaScript

is the resulting memory, the sequence of values −→v corresponds to the arguments of the
API invocation, and v′ is the value to which the API invocation evaluates. Accordingly, a
monitored API relation, ⇓API, has the form

〈µ,Γ,Σ,−→v ,−→σ 〉 ⇓API 〈µ′,Γ′,Σ′, v, σ〉

which adds to the original API configuration the initial and final labelings 〈Γ,Σ〉 and 〈Γ′,Σ′〉
(respectively), the sequence of security levels −→σ that is associated with the arguments of
the API invocation, and their corresponding reading effect σ.
API register. The bridge between API invocations and the corresponding monitored API
semantics is performed by a API register, denoted by RAPI. We define an API register as a
function that, given a memory and a sequence of values, returns a monitored API relation.

I Example 4 (Queue API Register). In order for an extended monitor to take into account
the methods of the Queue API from Example 1, the API Register must be extended to
handle invocations of the Queue API methods. In the following, ⇓QU , ⇓PU , and ⇓PO are
the API relations corresponding to each one of the methods of the Queue API:

RQ(µ, 〈r,m, . . .〉) =

 ⇓QU if m = “queue” ∧ $q ∈ dom(µ(r))
⇓P U if m = “push” ∧ $q ∈ dom(µ(r))
⇓P O if m = “pop” ∧ $q ∈ dom(µ(r))

The idea is to “mark” the Queue API object (the one bound to variable queueAPI) as well
as the concrete queue objects, with a special property (in this case, $q).

Monitor-extending Constructor. We now define a monitor-extending constructor E that,
given a monitored small-step semantics→IF, a partial function Intercept mapping statements
to sequences of values, and an API register RAPI, produces a new monitored small-step
semantics E(→IF, Intercept,RAPI). The new extended semantics handles the invocation of
APIs by applying the API relation that is returned by RAPI. API invocation is triggered
by interception points, statements containing expression redexes (expressions that only have
values as subexpressions) and that are in the set Intercept. Then, if the sequence of values
to which its subexpressions evaluate is in the domain of the API register RAPI, their image
by RAPI is the semantic relation that models the API to be executed.

The definition of E , given in Figure 1, makes use of a syntactic function, SubExpressions,
defined on JavaScript statements, such that SubExpressions[[s]] corresponds to the sequence
comprising all the subexpressions of s in the order by which they are evaluated. Rules [Non-
Intercepted Program Construct] and [Intercepted Program Construct - Standard
Execution] model the case in which the new small-step semantics behaves according to the
original semantics →IF. Rule [Intercepted Program Construct - API Execution] models
the case in which an API is executed. The semantics rule retrieves the semantics relation
that models the API to execute (using the API register) and then executes the API. After
executing the API, the sequence of values of its subexpressions is replaced with the value
to which the API call evaluates. Analogously, the sequence of levels of its subexpressions is
replaced with the reading effect of the API call.

3.3 Sufficient Conditions for Noninterferent API Extensions
We identify sufficient conditions to be satisfied by API relations in order for the new extended
monitored semantics E(→IF, Intercept,RAPI) to be noninterferent, assuming that the original
monitor →IF is noninterferent.

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 7

Non-Intercepted Program Construct
s /∈ Intercept 〈µ, s,−→σpc,Γ,Σ,−→σ 〉 →IF 〈µ′, s′,−→σpc

′,Γ′,Σ′,−→σ ′〉
〈µ, s,−→σpc,Γ,Σ,−→σ 〉 E(→IF, Intercept,RAPI) 〈µ′, s′,−→σpc

′,Γ′,Σ′,−→σ ′〉

Intercepted Program Construct - Standard Execution
s ∈ Intercept (µ, SubExpressions[[s]]) 6∈ dom(RAPI) 〈µ, s,−→σpc,Γ,Σ,−→σ 〉 →IF 〈µ′, s′,−→σpc

′,Γ′,Σ′,−→σpc
′〉

〈µ, s,−→σpc,Γ,Σ,−→σ 〉 E(→IF, Intercept,RAPI) 〈µ′, s′,−→σpc
′,Γ′,Σ′,−→σ ′〉

Intercepted Program Construct - API Execution
s ∈ Intercept (µ, SubExpressions[[s]]) ∈ dom(RAPI)

|SubExpressions[[s]]| = n+ 1 −→σ = −→σ ′ · 〈σ0, . . . , σn〉 ⇓API= RAPI(µ, SubExpressions[[s]])
〈µ,Γ,Σ,SubExpressions[[s]], 〈σ0, . . . , σn〉〉 ⇓API 〈µ′,Γ′,Σ′, v′, σ′〉
〈µ, s,−→σpc,Γ,Σ,−→σ 〉 E(→IF, Intercept,RAPI) 〈µ′, v′,−→σpc

′,Γ′,Σ′,−→σ ′ · σ′〉

Figure 1 Definition of the monitor-extending constructor E .

The first condition requires that the API relation is confined, as formalized in Definition 5.
An API relation is confined if it only creates/updates resources whose levels are higher than
or equal to the least upper bound on the levels of its arguments. This constraint is needed
because the choice of which API to execute may depend on all of its arguments.

I Definition 5 (Confined API Relation/Register). An API relation ⇓API is confined if, for
every memory µ well-labeled by a labeling 〈Γ,Σ〉, every sequence of argument values −→v and
corresponding sequence of security levels −→σ , if 〈µ, 〈Γ,Σ〉,−→v ,−→σ 〉 ⇓API 〈µ′, 〈Γ′,Σ′〉, v′, σ′〉 for
some memory µ′, labeling 〈Γ′,Σ′〉, value v′, and level σ′; then, for all security levels σ̂:

t−→σ 6≤ σ̂ ⇒ µ,Γ,Σ ≈id,σ̂ µ
′,Γ′,Σ′ ∧ σ′ 6≤ σ̂

Furthermore, we say that the API Register function RAPI is confined, written Conf(RAPI),
if all the API relations in its range are confined, and if for every memories µ and µ′, la-
belings 〈Γ,Σ〉 and 〈Γ′,Σ′〉, sequence of values −→v , security level σ, and function β, such that
µ,Γ,Σ ≈β,σ µ′,Γ′,Σ′, then RAPI(µ,−→v) = RAPI(µ′, β(−→v)).

The second condition requires that the API relation is noninterferent, as formalized in
Definition 6. In order to relate the outputs of the API Register in two low-equal memories,
we extend the notion of low-equality to API registers. Informally, two API registers are
said to be low-equal if, whenever they are given as input two low-equal memories and two
low-equal sequences of values, they output the same noninterferent API relation. Then,
an API relation is noninterferent if whenever it is executed on two low-equal memories, it
produces two low-equal memories and two low-equal values.

I Definition 6 (Noninterferent API Relation/Register). An API relation ⇓API is said to be
noninterferent, written NI(⇓API), if for every two memories µ0 and µ1 respectively well-
labeled by 〈Γ0,Σ0〉 and 〈Γ1,Σ1〉, any two sequences of values −→v0 and −→v1, respectively labeled
by two sequences of security levels −→σ0 and −→σ1, and any security level σ for which there exists
a function β such that −→v0,

−→σ0 ≈β,σ −→v1,
−→σ1 and µ0,Γ0,Σ0 ≈β,σ µ1,Γ1,Σ1, if:

〈µ0,Γ0,Σ0,
−→v0 ,
−→σ0〉 ⇓API 〈µ′0,Γ′0,Σ′0, v′0, σ′0〉 ∧ 〈µ1,Γ1,Σ1,

−→v1 ,
−→σ1〉 ⇓API 〈µ′1,Γ′1,Σ′1, v′1, σ′1〉

then there is an extension β′ of β s.t. µ′0,Γ′0,Σ′0≈β′,σ µ
′
1,Γ′1,Σ′1 and 〈v′0〉, 〈σ′0〉≈β′,σ 〈v′1〉, 〈σ′1〉.

Furthermore, we say that the API Register function RAPI is noninterferent, written
NI(RAPI), if all the API relations in its range are noninterferent.

8 Modular Monitor Extensions for Information Flow Security in JavaScript

I Example 7 (Noninterferent JavaScript program using the Queue API). Assume that the
APIs given in Example 1 are noninterferent and consider the following program that starts
by computing two objects o0 and o1:
1 q = queueAPI . createQueue ();
2 if (h) { q.push(o1 , 1); }
3 q.push(o0 , 0); l = q.pop ();

If this program starts with memories µi (i ∈ {0, 1}) using labeling 〈Γ,Σ〉 and assuming that
in both executions the invocations of all the external APIs go through (i.e. the execution is
never blocked), then it must terminate with memories µ′i labeled by Γ′,Σ:

µi =
[

(#glob, o0) 7→ r0, (#glob, o1) 7→ r1,

(#glob, h) 7→ i

]
Γ =
[

(#glob, h) 7→ H, (#glob, l) 7→ L,

(#glob, o0) 7→ L, (#glob, o1) 7→ L

]
µ′

i =
[

(#glob, o0) 7→ r0, (#glob, o1) 7→ r1,

(#glob, h) 7→ i, (#glob, l) 7→ ri, (#glob, q) 7→ rq

]
Γ′ =

[
(#glob, h) 7→ H, (#glob, l) 7→ H,

(#glob, o0) 7→ L, (#glob, o1) 7→ L

]
Since initial memories are low-equal, µ0,Γ,Σ ≈id,L µ1,Γ,Σ, we use the hypothesis that
all three API relations are noninterferent to conclude that the memories yielded by the
invocation of the API relations in lines 1, 2, and 3 are also low-equal. Furthermore, in the
execution that maps h to 1, the value of l clearly depends on the value of h, from which we
conclude that it is also the case in the execution that maps h to 0.

Our main result states that if the API relation is confined and noninterferent, then the
extension of the noninterferent JavaScript monitor with the API monitor is noninterferent.
I Theorem 8 (Security). For every monitored semantics →IF, API register RAPI and set of
interception points Intercept:

NImon(→IF) ∧ NI(RAPI) ∧ Conf(RAPI) ⇒ NImon(E(→IF, Intercept,RAPI))

4 A Meta-Compiler for Securing Web APIs

We now propose a way of extending an information flow monitor inlining compiler to take
into account the execution of arbitrary APIs.
Input compilers. We assume available two inlining compilers specified by compilation func-
tions Ce and Cs for compiling JavaScript expressions and statements, respectively. Function
Cs makes use of function Ce. The compilers Ce/Cs map every expression e/statement s to a
pair 〈s′, i〉, where:
1. statement s′ simulates the execution of e/s in the monitored semantics;
2. index i is such that, after the execution of s′, (1) the compiler variable $v̂i stores the

value to which e/s evaluates in the original semantics and (2) the compiler variable $l̂i
stores its corresponding reading effect.
We assume that the inlining compiler works by pairing up each variable/property with

a new one, called its shadow variable/property [8, 16], that holds its corresponding security
level. Since the compiled program has to handle security levels, we include them in the set
of program values, which means adding them to the syntax of the language as such, as well
as adding two new binary operators corresponding to ≤ (the order relation) and t (the least
upper bound). Besides adding to every object o an additional shadow property $lp for every
property p in its domain, the inlined monitoring code is also assumed to extend o with a
special property $struct that stores its structure security level.
I Example 9 (Instrumented Labeling). Given an object o = [p 7→ v0, q 7→ v1] pointed to by
ro and a labeling 〈Γ,Σ〉, such that Γ(ro) = [p 7→ H, q 7→ L] and Σ(ro) = L, the instrumented
counterpart of o labeled by 〈Γ,Σ〉 is ô = [p 7→ v0, q 7→ v1, $lp 7→ H, $lq 7→ L, $struct 7→ L].

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 9

Intercepted Expression
SubExpressions[[e]] = 〈e0, . . . , en〉 CAPI〈Ce〉〈e0〉 = 〈s0, i0〉 · · · CAPI〈Ce〉〈en〉 = 〈sn, in〉

ê = Replace[[e, $v̂i0 , . . . , $v̂in]] 〈Ce〉ê = 〈ŝ, i〉

sapi =

s0 . . . sn

$ifsig = $apiRegister($v̂i0 , . . . , $v̂in);
if($ifsig){

$ifsig.check($v̂i0 , . . . , $v̂in , $l̂i0 , . . . , $l̂in);
$v̂i = ê;
$l̂i = $ifsig.label($v̂i, $v̂i0 , . . . , $v̂in , $l̂i0 , . . . , $l̂in);

} else {ŝ}

s′ =
{

sapi if ê ∈ Intercept
ŝ otherwise

CAPI〈Ce〉〈e〉 = 〈s′, i〉

Figure 2 Extended Compiler CAPI.

4.1 IFlow Signatures
We propose IFlow signatures to simulate monitored executions of API relations. IFlow
signatures are composed of three methods – domain, check, and label. Method domain
checks whether or not to apply the API, check checks if the constraints associated with the
API are verified, and label updates the instrumented labeling and outputs the reading effect
associated with a call to the API. Functions check and label must be specified separately
because check has to be executed before calling the API (in order to prevent its execution
when it can potentially trigger a security violation), whereas label must be executed after
calling the API (so that it can label the memory resulting from its execution). Formally,
we define an IFlow Signature as a triple 〈#check,#label,#domain〉, where: #check is the
reference of the check function object, #label is the reference of the label function object,
and #domain is the reference of the domain function object.
Runtime API Register. We assume the existence of a runtime function called the runtime
API register, that simulates the API Register, which we denote by $apiRegister. The
function $apiRegister makes use of the domain method of each API in its range to decide
whether there is an API relation associated with its inputs, in which case it outputs an
object containing the corresponding IFlow Signature, otherwise it returns null.
Meta-compiler. Figure 2 presents a new meta-compiler, CAPI, that receives as input an
inlining compiler for JavaScript expressions, Ce, and outputs a new inlining compiler that
can handle the invocation of the APIs whose signatures are in the range of the API re-
gister simulated by $apiRegister. Since statement redexes are not intercepted, the com-
pilation function Cs is left unchanged except that it uses the new compilation function for
expressions for compiling the subexpressions of the given statement. The specification of
the meta-compiler makes use of a syntactic function Replace that receives as input an ex-
pression and a sequence of variables and outputs the result of substituting each one of its
subexpressions by the corresponding sequence variable. Intercept is the set of all statements
that contain an expression redex whose execution is to be intercepted by the monitored
semantics. Each expression that can be an interception point of the semantics is compiled
by the compiler generated by the meta-compiler to a statement, which: (1) executes the
statements corresponding to the compilation of its subexpressions, (2) tests if the sequence
of values corresponding to the subexpressions of the expression to compile is associated with
an IFlow signature, (3) if the test is true, it executes the check method of the corresponding
IFlow signature, an expression equivalent to the original expression, and the label method
of the corresponding IFlow signature. If the test is false, it executes the compilation of an

10 Modular Monitor Extensions for Information Flow Security in JavaScript

expression equivalent to the original one by the original inlining compiler. For simplicity,
we do not take into account expressions that manipulate control flow, meaning that the
evaluation of a given expression implies the evaluation of all its subexpressions. Therefore,
we do not consider the JavaScript conditional expression. This limitation can be surpassed
by re-writing all conditional expressions as IF statements before applying the compiler.

4.2 Correctness
We say that an inlining compiler is correct with respect to a given monitored semantics→IF if,
provided that a program and its compiled counterpart are evaluated in “similar” memories,
the evaluation of the original one in the monitored semantics terminates if and only if the
evaluation of its compilation also terminates in the original semantics, in which case the
final memories as well as the computed values are again “similar”. Here we use a notion of
similarity between labeled memories in the monitored semantics and instrumented memories
in the original semantics, denoted by Sβ . This relation requires that for every object in
the labeled memory, the corresponding labeling coincides with the instrumented labeling
and that the property values of the original object be similar to those of its instrumented
counterpart. (The formal definition of Sβ can be found in the companion report [20].)

The correctness of the compiler generated by the meta-compiler depends on the correct-
ness of the compiler given as input and the correctness of the IFlow signatures in the runtime
API register. Definitions 10 and 11 formally specify the conditions that the instrumented
API register must verify in order for the generated compiler to be correct. We use →∗JS as
the semantics relation for JavaScript configurations.

I Definition 10 (Correct IFlow Signature). An IFlow Signature 〈#c,#l,#d〉 is correct with
respect to an API ⇓API if for all memories µ0 and µ1, labeling 〈Γ,Σ〉, sequence of values
−→v , and sequence of security levels −→σ , such that 〈µ0,Γ,Σ〉 Sβ µ1 for some function β, then:
〈µ0,Γ,Σ,−→v ,−→σ 〉 ⇓API 〈µ′0,Γ′,Σ′, v0, σ〉 if and only if (1) 〈µ1,#c(β(−→v),−→σ)〉 →∗JS 〈µ′1, true〉,
(2) 〈µ′1, β(−→v)〉 ⇓JS

API 〈µ′′1 , v1〉, and (3) 〈µ′′1 ,#l(v1, β(−→v),−→σ)〉 →∗JS 〈µ′′′1 , σ〉, in which case
〈µ′0,Γ′,Σ′〉 Sβ′ µ′′′1 and v0 Sβ v1, for some β′ extending β.

I Definition 11 (Correct Runtime API Register). A runtime API register corresponding to
a function object pointed by #$apiRegister is correct with respect to an API register RAPI if
for all memories µ0 and µ1, labeling 〈Γ,Σ〉 and sequence of values−→v , such that 〈µ0,Γ,Σ〉 Sβ µ1
for some function β, then: RAPI(µ0,

−→v) = ⇓API if and only if (1) 〈µ1,#apiRegister(β(−→v))〉
→∗JS 〈µ′1, rsig〉, (2) 〈µ0,Γ,Σ〉 Sβ′ µ′1 for some β′ extending β, and (3) signature 〈osig(“check”),
osig(“label”), osig(“domain”)〉 is correct with respect to ⇓API, where osig = µ′1(rsig).

Theorem 12 states that provided that the compiler given as input to the meta-compiler
is correct and the runtime API register is correct, the generated compiler is also correct.

I Theorem 12 (Correctness). If compiler C is correct w.r.t. →IF, then CAPI〈C〉 is correct
w.r.t. E(→IF, Intercept,RAPI) provided that the runtime API register is correct w.r.t. RAPI.

The meta-compiler proposed in this section allows the developer of the inlining compiler
to extend it in a modular way, developing and proving each API IFlow signature at a time.

5 Implementation of the Meta Compiler and DOM API Extension

An implementation of a meta-compiler based on the JavaScript inlining compiler of [10]
can be found in [20] together with an online testing tool and a set of IFlow signatures that

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 11

RDOM
API (µ, 〈r,m, . . .〉) =

⇓cre if m = “createElement” ∧ r = #doc
⇓app if m = “appendChild” ∧@tag ∈ dom(µ(r))
⇓rem if m = “removeChild” ∧@tag ∈ dom(µ(r))
⇓len if m = “length” ∧@tag ∈ dom(µ(r))
⇓par if m = “parentNode” ∧@tag ∈ dom(µ(r))
⇓ind if m ∈ Number ∧@tag ∈ dom(µ(r))
⇓sib if m = “nextSibling” ∧@tag ∈ dom(µ(r))

Figure 3 API register RDOM
API for the DOM API.

includes all those studied in the paper. As a case study, we give a high-level description of
our the DOM API extension.

Interaction between client-side JavaScript programs and the HTML document is done via
the DOM API [17]. In order to access the functionalities of this API, JavaScript programs
manipulate a special kind of objects, here named DOM objects. In contrast to the ECMA
Standard [1] that specifies in full detail the internals of objects created at runtime, the
DOM API only specifies the behavior that DOM interfaces are supposed to exhibit when a
program interacts with them. Hence, browser vendors are free to implement the DOM API
as they see fit. In fact, in all major browsers, the DOM is not managed by the JavaScript
engine. Instead, there is a separate engine, often called the render engine, whose role is to
do so. Therefore, interactions between a JavaScript program and the DOM may potentially
stop the execution of the JavaScript engine and trigger a call to the render engine. Thus, a
monitored JavaScript engine has no access to the implementation of the DOM API.

We model DOM objects as standard JavaScript objects and we assume that every
memory contains a document object denoted doc, which is accessed through the property
“doc” and stored in fixed reference #doc. Each DOM object defines a property @tag that
specifies its tag (for instance, 〈div〉, 〈html〉, 〈a〉) and, possibly, an arbitrary number of in-
dexes 0, ..., n each pointing to one of its n + 1 children. DOM Element objects form a
forest, such that the displayed HTML document corresponds to the tree hanging from the
object pointed to by #doc. Due to lack of space, we only present the labeled API relation
for removing a DOM Element object from its parent object in the DOM forest. This API
method gives rise to implicit information flows [2, 18, 23] that its labeled version needs to
take into account.

I Example 13 (Leak via removeChild - Order Leak). Suppose that in the original memory
there are three orphan DIV nodes bound to variables div1, div2, and div3.
1 div1. appendChild (div2); div1. appendChild (div3);
2 if(h) { div1. removeChild (div2); }
3 l = div1 [0];

After the execution of this program, depending on the value of the high variable h, the
value of the low variable l can be either that of div2 or div3, meaning that the final level
associated with variable l must be H in both executions. This example shows that, when
removing a node, the new indexes of its right siblings are affected. To tackle this problem,
the labelled DOM API methods enforce that the level of the property through which a DOM
object is accessed is always lower than or equal to the levels of the properties corresponding
to its right siblings.

Below we give the specification of the labeled API relation ⇓rem for removing a DOM
object from its parent in the DOM forest. This rule receives a sequence of arguments
〈r0,m1, r2〉 as input and removes the object pointed to by r2 from the children of the object
pointed to by r1. To this end, it first checks that µ(r0) is in fact the parent of µ(r2). Then,

12 Modular Monitor Extensions for Information Flow Security in JavaScript

domain = function(o0,m){
return o0[@tag] && (m == “removeChild”);

}

check = function(o0,m1, o2, σ0, σ1, σ2){
var i = $index(o0, o2);
return $check(σ0 t σ1 t σ2 ≤ o0[$shadow(i)]);

†

}

label = function(ret, o0,m1, o2, σ0, σ1, σ2){
var j = $index(o0, o2);
while(j < o0.length− 1){

o0[$shadow(j)] = o0[$shadow(j + 1)];
††

}
return σ0 t σ1 t σ2

†††;
}

Figure 4 IFlow Signature of ⇓rem.

the object µ(r0) is updated by shifting by −1 all the indexes equal to or higher than i (the
index of the object being removed) and by removing its index n. The levels of the indexes
of the right siblings of the node to remove are accordingly shifted by −1. The constraint of
the rule prevents a program from removing in a high context a node that was inserted in a
low context. Function R#Children receives a memory µ as input and outputs a binary relation
such that if 〈r, n〉 ∈ R#Children(µ), then the DOM node pointed to by r has n children (with
indexes 0, . . . , n− 1).
removeChild
µ(r0)(i) = r2 〈r0, n+ 1〉 ∈ R#Children(µ) dom(o0) = dom(γ0) = dom(µ(r0))\{n}
∀0≤j<i . o0(j) = µ(r0)(j) ∀i≤j<n . o0(j) = µ(r0)(j + 1) o0(@tag) = µ(r0)(@tag)
∀0≤j<i . γ0(j) = Γ(r0)(j) ∀i≤j<n . γ0(j) = Γ(r0)(j + 1)

††
γ0(@tag) = Γ(r0)(@tag)

µ′ = µ [r0 7→ o0] Γ′ = Γ [r0 7→ γ0] σ0 t σ1 t σ2 ≤ Γ(r0)(i)
†

〈µ,Γ,Σ, 〈r0,m1, r2〉, 〈σ0, σ1, σ2〉〉 ⇓rem 〈µ′,Γ′,Σ, r2, σ0 t σ1 t σ2
†††〉

In order for DOM API relations to be added to the semantics, one has to add them to the
API register. Hence, we assume that the RAPI extends the API register given in Figure 3.
The following lemma validates the hypotheses of the security theorem (Theorem 8) for
RDOM

API , allowing us to conclude that the extension of a noninterferent JavaScript monitor
with the DOM API relations here defined is noninterferent.

I Lemma 14 (Confinement and Noninterference for the DOM API). Conf(RDOM
API)∧NI(RDOM

API)

Figure 4 presents a possible IFlow signature for the API relation ⇓rem, which makes use
of the following runtime functions: (1) $check diverges if its argument is different from true

and returns true otherwise; (2) $shadow receives as input a property name and outputs the
name of the corresponding shadow property; and (3) $index outputs the index of its second
argument in the list of children of its first argument. The labeled boxes in the API relation
rule and in the code of the IFlow signature are intended to emphasize the correspondence
between the two.

6 Conclusion

In summary, we have proposed a methodology for extending arbitrary monitored JavaScript
semantics with secure APIs, which allows to prove the security of the extended monitor in
a modular way. As a case study, we extend the inlining compiler of [10] with a fragment of
the DOM Core Level 1 API. Further related technical developments, as well as an imple-
mentation that includes the IFlow signatures of the APIs studied in the paper, can be found
in [20].

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 13

This work has been partially supported by the EPSRC Grant Reference EP/H008373/1.

References
1 The 5.1th edition of ECMA 262 June 2011. ECMAScript Language Specification. Technical

report, ECMA, 2011.
2 A. Almeida-Matos, J. Fragoso Santos, and T. Rezk. An Information Flow Monitor for a

Core of DOM - Introducing References and Live Primitives. In TGC, 2014.
3 T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis. In

PLAS, 2009.
4 T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In PLAS,

2010.
5 T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In POPL,

2012.
6 A. Banerjee and D. A. Naumann. Secure information flow and pointer confinement in a

java-like language. In CSFW, 2002.
7 N. Bielova. Survey on javascript security policies and their enforcement mechanisms in a

web browser. Special Issue on Automated Specification and Verification of Web Systems of
JLAP, 2013.

8 A. Chudnov and D. A. Naumann. Information flow monitor inlining. In CSF, 2010.
9 D. E. Denning. A lattice model of secure information flow. Communications of the ACM,

19(5), 1976.
10 J. Fragoso Santos and T. Rezk. An Information Flow Monitor-Inlining Compiler for Secur-

ing a Core of Javascript. In SEC, 2014.
11 P. Gardner, G. Smith, M. J. Wheelhouse, and U. Zarfaty. Dom: Towards a formal specific-

ation. In PLAN-X, 2008.
12 G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow Analyses.

PhD thesis, Kansas State University, 2007.
13 A. Guha, B. Lerner, J. Gibbs Politz, and S. Krishnamurthi. Web api verification: Results

and challenges. 2012.
14 D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information flow in

JavaScript and its APIs. In SAC.
15 D. Hedin and A. Sabelfeld. Information-flow security for a core of javascript. In CSF, 2012.
16 J. Magazinius, A. Russo, and A. Sabelfeld. On-the-fly inlining of dynamic security monitors.

Computers & Security, 2012.
17 W3C Recommendation. DOM: Document Object Model (DOM). Technical report, W3C,

2005.
18 A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow in dynamic tree struc-

tures. In ESORICS, 2009.
19 A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal

on Selected Areas in Communications, 2003.
20 José Fragoso Santos and Tamara Rezk. Information flow monitor-inlining compiler.

http://www-sop.inria.fr/indes/ifJS/.
21 A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated analysis of

security-critical javascript apis. In SP, 2011.
22 V. N. Venkatakrishnan, W. Xu, D. C. DuVarney, and R. Sekar. Provably correct runtime

enforcement of non-interference properties. In ICICS, 2006.
23 Deepak Garg Vineet Rajani, Abhishek Bichhawat and Christian Hammer. Information

Flow control for Event Handling and the DOM in Web Browsers. In CSF, 2015. to appear.

14 Modular Monitor Extensions for Information Flow Security in JavaScript

A DOM API Relations

This appendix describes the labeled API relations with which we extend the JavaScript
semantics for interaction with DOM objects.

A.1 Auxiliary Semantic Functions
Our specification of the DOM API relations makes use of the following semantic functions:

R#Children receives a memory µ as input and outputs a binary relation in Ref ×N, such
that if 〈r, n〉 ∈ R#Children(µ), then the DOM node pointed to by r has n children (meaning
that it defines the indexes 0, · · · , n− 1).
RAncestor receives a memory µ as input and outputs a binary relation in Ref ×Ref , such
that if 〈r0, r1〉 ∈ RAncestor(µ), then the DOM node pointed to by r0 is an ancestor of the
DOM node pointed to by r1 in the DOM forest stored in µ.
RParent receives a memory µ as input and outputs a relation in Ref × Ref , such that
if 〈r0, r1〉 ∈ RParent(µ), then the DOM node pointed to by r0 is the parent of the DOM
node pointed to by r1 (meaning that there is an index i such that µ(r0)(i) = r1).
Orphan receives a memory µ as input and ouputs a set of references, such that if r ∈
Orphan(µ), then the DOM node pointed to by r is an orphan node, that is, it does not
have a parent in the DOM forest stored in µ (meaning that it is the root of a dangling
tree).

A.2 DOM API Relations - Invariants

Indexes Invariant. When appending a new node to a given node, its index depends on the
indexes of the nodes that were already appended. Analogously, when removing a node, the
new indexes of its right siblings depend on the index of the node that is to be removed. To
tackle this problem, we specify the semantic relations corresponding to the DOM methods
removeChild and appendChild in such a way that, for every DOM node, the level of the
property through which it is accessed is always lower than or equal to the levels of the
properties corresponding to its right siblings. We refer to this invariant as the indexes
invariant.
Parent Node Invariant. In the formal model, a DOM object does not define a property
pointing to its parent. However, the API relations are specified in such a way that the
structure security level of a DOM node works as the level of a “ghost” property pointing to
its parent node. Hence, if the structure of a DOM object is observable, it also means that
its parent is also observable.

A.3 DOM API Relations - Specification
In the following, we explain the monitored API rules given in Figure 5. In the specification
of each API, when an element of the initial configuration is not used in the premises of the
corresponding rule, we denote it by _.

[createElement] The API relation ⇓cre creates a new DOM Element node with tag m
and binds a free reference r to it. The structure security level of the newly created node
as well as the level of its property @tag are both set to σ0 t σ1 t σ2 in order to verify
the confinement property (Definition 5).

José Fragoso Santos, Tamara Rezk, and Ana Almeida Matos 15

createElement
r 6∈ dom(µ) µ′ = µ [r 7→ [@tag 7→ m]]

Γ′ = Γ [r 7→ [@tag 7→ σ0 t σ1 t σ2]] Σ′ = Σ [r 7→ σ0 t σ1 t σ2]
〈µ,Γ,Σ, 〈#doc,_,m〉, 〈σ0, σ1, σ2〉〉 ⇓cre 〈µ′,Γ′,Σ′, r, σ0 t σ1 t σ2〉

removeChild
µ(r0)(i) = r2 〈r0, n+ 1〉 ∈ R#Children(µ) dom(o0) = dom(γ0) = dom(µ(r0))\{n}
∀0≤j<i · o0(j) = µ(r0)(j) ∀i≤j<n · o0(j) = µ(r0)(j + 1) o0(@tag) = µ(r0)(@tag)
∀0≤j<i · γ0(j) = Γ(r0)(j) ∀i≤j<n · γ0(j) = Γ(r0)(j + 1) γ0(@tag) = Γ(r0)(@tag)

µ′ = µ [r0 7→ o0] Γ′ = Γ [r0 7→ γ0] σ0 t σ1 t σ2 ≤ Γ(r0)(i)
〈µ,Γ,Σ, 〈r0,_, r2〉, 〈σ0, σ1, σ2〉〉 ⇓rem 〈µ′,Γ′,Σ, r2, σ0 t σ1 t σ2〉

appendChild - orphan node
〈r2, r〉 6∈ RAncestor(µ) r2 ∈ Orphan(µ) 〈r0, n〉 ∈ R#Children(µ)

σ0 t σ1 t σ2 ≤ Σ(r0) u Σ(r2)
µ′ = µ [r0 7→ µ(r0) [n 7→ r2]] Γ′ = Γ [r0 7→ Γ(r0) [n 7→ Σ(r0) t Σ(r2)]]
〈µ,Γ,Σ, 〈r0,_, r2〉, 〈σ0, σ1, σ2〉〉 ⇓app 〈µ′,Γ′,Σ, r2, σ0 t σ1 t σ2〉

appendChild - non-orphan node
〈rp, r2〉 ∈ RParent(µ) 〈µ,Γ,Σ, 〈rp,_, r2〉, 〈σ0 t Σ(r2), σ1, σ2〉〉 ⇓rem 〈µ′,Γ′,Σ′,_,_〉
〈µ′,Γ′,Σ′, 〈r0,_, r2〉, 〈σ0 t Σ(r2), σ1, σ2〉〉 ⇓app 〈µ′′,Γ′′,Σ′′,_,_〉 σ0 t σ1 t σ2 ≤ Σ(r2)

〈µ,Γ,Σ, 〈r0,_, r2〉, 〈σ0, σ1, σ2〉〉 ⇓app 〈µ′′,Γ′′,Σ′′, r2, σ0 t σ1 t σ2〉

length
〈r, n〉 ∈ R#Children(µ) σ = σ0 t σ1 t Σ(r)
〈µ,Γ,Σ, 〈r,_〉, 〈σ0, σ1〉〉 ⇓len 〈µ,Γ,Σ, n, σ〉

parentNode

v =
{
rp if 〈rp, r〉 ∈ RParent(µ)
undefined otherwise

σ = σ0 t σ1 t Σ(r2)
〈µ,Γ,Σ, 〈r,_〉, 〈σ0, σ1〉〉 ⇓par 〈µ,Γ,Σ, v, σ〉

index

〈v, σ〉 =
{
〈µ(r)(i),Γ(r)(i)〉 if i ∈ dom(µ(r))
〈undefined,Σ(r)〉 otherwise

〈µ,Γ,Σ, 〈r, i〉, 〈σ0, σ1〉〉 ⇓ind 〈µ,Γ,Σ, v, σ0 t σ1 t σ)〉

nextSibling
〈rp, r〉 ∈ RParent(µ) 〈rp, n〉 ∈ R#Children(µ)

〈vi, σi〉 =
{
〈µ(rp)(i+ 1),Γ(rp)(i+ 1)〉 if i+ 1 < n

〈undefined,Γ(rp)〉 otherwise
σ = σ0 t σ1 t σi t Σ(r)

〈µ,Γ,Σ, 〈r,_〉, 〈σ0, σ1〉〉 ⇓sib 〈µ,Γ,Σ, vi, σ〉

Figure 5 DOM API Relations

[removeChild] The API relation ⇓rem removes the node pointed to by r2 from the list of
children of the node pointed to by r0, after checking that µ(r0) is in fact the parent of
µ(r2). The object µ(r0) is updated by shifting by −1 all the indexes equal to or higher
than i (the index of the object being removed) and by removing index n. The levels of

16 Modular Monitor Extensions for Information Flow Security in JavaScript

the indexes of the right siblings of the node to remove are accordingly shifted by −1.
The constraint of the rule prevents a program from removing in a high context a node
that was inserted in a low context (see Example 13).
[appendChild] The API relation ⇓app has two different behaviors depending on the fact
that the node pointed to by r2 is or is not an orphan node. If the node pointed to by r2 is
an orphan node, the behavior of ⇓app is the following: (1) it first checks that the node to
append (µ(r2)) is not an ancestor of the node to which it is to be appended (µ(r0)); (2)
it creates a new property n in µ(r0) and sets it to point to µ(r2) (where n is the previous
number of children of µ(r0)); (3) the level of the new index property n is set to the least
upper bound on the levels of the arguments and the level of its new left sibling provided
that it exists (in order to enforce the Indexes Invariant); (4) the least upper bound on
the level of the arguments must be equal to or lower than the structure security level of
µ(r0) because adding an index to a node changes its domain; (5) the least upper bound
on the level of the arguments must be equal to or lower than the structure security level
of µ(r2) (in order to enforce the Parent Node Invariant). If the node pointed to by r2 is
not an orphan node, the behavior of ⇓app is the following: (1) it removes µ(r2) from the
list of children of its current parent (using the ⇓rem API relation); (2) the API relation
⇓app calls itself recursively.
[length] The API relation ⇓len evaluates to the number of children of µ(r). The reading
effect of a call to this API must be higher than or equal to the structure security level of
µ(r) because it leaks information about the domain of µ(r). Concretely, by calling this
API relation, one finds out which are the index properties that the node defines.
[parentNode] The API relation ⇓par evaluates either to the reference that points to the
parent of µ(r), or to undefined if µ(r) is an orphan node. The reading effect of a call to
this API is higher than or equal to the structure security level of µ(r) because it acts as
the level of a “ghost” property pointing to the corresponding parent node.
[index] The API relation ⇓ind evaluates to the ith child of µ(r). If µ(r) has less than
i + 1 children the call to this API returns undefined. Besides the security levels of
the arguments, the reading effect of a call to this API must take into account either
the security level associated with index i (provided that it is defined), or the structure
security level of µ(r) (if it does not exist).
[nextSibling] The API relation ⇓sib evaluates either to the reference that points to the
right sibling of µ(r), or to undefined if µ(r) does not have a right sibling. In the former
case, the reading effect of a call to this API is higher than or equal to the security level
associated with the index pointing to the right sibling, whereas in the latter case it must
be higher than or equal to the structure security level of the parent node of µ(r).

	Introduction
	Related Work
	Modular Extensions for JavaScript Monitors
	Noninterferent JavaScript Monitors
	API Extensions to JavaScript Monitors
	Sufficient Conditions for Noninterferent API Extensions

	A Meta-Compiler for Securing Web APIs
	IFlow Signatures
	Correctness

	Implementation of the Meta Compiler and DOM API Extension
	Conclusion
	DOM API Relations
	Auxiliary Semantic Functions
	DOM API Relations - Invariants
	DOM API Relations - Specification

