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Resumo

Os avanços recentes experimentados pelos algoritmos para Satisfação e Optimização Inteira com variáveis

proposicionais (PB-SAT e PBO respectivamente) foram motivados pelo conhecimento acumulado nos al-

goritmos para Satisfação Proposicional (SAT), nomeadamente a extensão da aprendizagem baseada em

conflitos dos algoritmos para SAT para os algoritmos para PB-SAT e PBO. Tal extensão compreende

diferentes esquemas de aprendizagem. Contudo, a comunidade cientifı́ca não está de acordo sobre qual

o melhor esquema de aprendizagem a ser utilizado por estes algoritmos. Assim sendo, a contribuição

deste trabalho consiste na apresentação de um exaustivo estudo comparativo entre vários esquemas de

aprendizagem diferentes sobre uma plataforma comum. Os resultados de cada esquema de aprendiza-

gem relativos a um grande conjunto de instâncias são apresentados, tendo sido implementados sobre

um algoritmo de acordo com o estado da arte, o bsolo.

Também são apresentados resultados preliminares relativos à aplicação de algoritmos de aprendiza-

gem automática para a selecção do esquema de aprendizagem mais apropriado para cada instância

dada como input. O objectivo prende-se com o desenvolvimento de um algoritmo para PBO e PB-SAT

“adaptável” à instância dada como input por forma a tirar partido dos diferentes esquemas de apren-

dizagem.

Finalmente, vários aspectos relativos à implementação de um algoritmo para PBO e PB-SAT são

discutidos e os respectivos resultados experimentais são apresentados e analisados.

Palavras Chave

Optimazação inteira com variáveis proposicionais, Satisfação proposicional, Saltos não cronológicos,

Aprendizagem baseada em conflitos, Planos de corte, Reduções a restrições de cardinalidade.
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Abstract

Recent advances in Pseudo-Boolean Solving and Optimization (PB-SAT and PBO respectively) have

been motivated by the accumulated knowledge in Propositional Satisfiability (SAT) algorithms, namely

the extension of conflict-based learning from SAT solvers to PB solvers. Such extension comprises sev-

eral different learning schemes. However, it is not commonly agreed among the research community

which learning scheme should be used in PB solvers. Hence, this work presents a contribution by

providing an exhaustive comparitive study between several learning schemes in a common platform.

Results for a large set of benchmarks are presented for the different learning schemes, which were im-

plemented on bsolo, a state of the art PB solver.

Preliminary results concerning the application of machine learning algorithms to the selection of the

most appropriate learning scheme for each instance given as input are also presented. The goal is to

build an “instance aware” PB solver that takes advantage of all different learning schemes.

Finally, several issues concerning the implementation of an efficient PB solver are also discussed and

the corresponding experimental results are presented and analysed.

Keywords

Pseudo-Boolean Optimization, Propositional Satisfiability, Non-chronological Backtracking, Conflict-

based Learning, Cutting Planes, Cardinality Constraint Reductions.
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Chapter 1

Introduction

The Propositional Satisfiability (SAT) algorithms have experimented huge developments in the last two

decades due to the introduction of conflict-based learning [22, 33] and watched-literal schemes for

Boolean Constraint Propagation (BCP) [23]. As such, they are now applied to solve many real world

problems which are encoded into SAT instances (with millions of clauses and tens of thousands of vari-

ables). However, there are many problems which cannot be directly (or naturally) encoded into SAT

instances, thus requiring a huge number of clauses. Therefore, in these situations, clauses may not be

the most efficient type of constraint and other kinds of constraints must be used. Since Pseudo-Boolean

(PB) Constraints are much more expressive than clauses [14], they have been successfully used to en-

code many problems in different research areas such as Logic Synthesis and Verification, Operations

Research, Bioinformatics and many more. Additionally, PB functions are increasingly used as objective

functions in optimization applications.

The use of an algorithm based on the Davis Putnam Longemann Loveland (DPLL) Procedure for

solving the Pseudo-Boolean Optimization (PBO) problem was proposed by P. Barth in 1995 in its seminal

paper ”A Davis-Putnam based enumeration algorithm for linear pseudo-Boolean optimization” [4]. The

enormous progresses of SAT solvers contributed to the development of more powerful pseudo-Boolean

solvers which exhibit the same structure of a typical SAT solver. Moreover, PB solvers also benefit from

all the knowledge and experience from Integer Linear Programming research. The contributions of SAT

solvers to PB solvers, particularly the introduction of conflict-based learning, are the main topic of this

thesis and will be explained with detail in the following chapters.

1.1 Organization

This thesis is divided in four main chapters. Chapter 2 presents a self-contained description of a generic

satisfiability algorithm. This description is, however, focused on the conflict analysis procedure. In

chapter 3, we introduce the Pseudo-Boolean Optimization (PBO) problem and its corresponding deci-
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sion problem, the Pseudo-Boolean Satisfiability (PB-SAT) problem. Then, we explain how to extend

the conflict analysis and the propagation procedures, already discussed for SAT solvers, to PB solvers.

Again, our discussion is focused on the conflict analysis procedure and, as such, four different learning

techniques are described with detail. Chapter 4 is focused on implementation-related issues, it describes

the main issues and concerns raised when implementing all the learning schemes presented in chapter 3

and explains the adopted solutions. In chapter 5, we present the experimental results corresponding to

several versions of the solver, namely the versions which implement each different learning scheme.

This thesis concludes in chapter 6 with an overview of the work already developed and a description

of several proposals for future work.

1.2 PB-SAT and PBO Applications

Many problems can be encoded as PBO or PB-SAT instances. This section presents two simple examples

in which it will be used a PBO encoding and PB-SAT encoding respectively.

The Progressive Party

A progressive party [30] is a party that is organized during a yacht competition. Since it is a yacht

competition, the party takes place on several yachts. Some yachts are selected to be hosts. Naturally, the

crew of each host yacht must stay on board to receive the guests. The crews of the remaining boats visit

the host boats for T successive time periods during the evening. Note that each guest crew must stay

together as a unit. Every boat can only receive a limited number of guests at a time and crew sizes are

different. A guest crew cannot revisit a host and guest crews cannot meet more than once. The goal of

the party organizer is to minimize the number of host boats.

The Boolean variables used in the problem are the following:

• δi = 1 iff boat i corresponds to a host.

• γikt = 1 iff boat k is a guest of boat i in period t.

• ηklt = 1 iff guest boats k and l meet in period t.

For each boat i, ci represents the number of elements of the crew and Ki represents the total capacity of

the boat. Naturally, the objective function is:
∑

i

δi

This problem requires the following constraints:

• A boat can only be visited if it is a host boat. So, for all i, k, t, such that i 6= k:

γikt − δi ≤ 0

2



• The capacity of a host boat cannot be exceeded. So, for all i, t:

∑

k 6=i

ck · γikt ≤ Ki − ci

• Each crew must always have a host or be a host (but cannot be a host and have a host at the same

time). So, for all k, t:
∑

i6=k

γikt + δk = 1

• A guest crew cannot visit a host boat more than one. For all i, k, such that i 6= k:

∑

t

γikt ≤ 1

• For all i, k, l, t:

γikt + γilt − ηklt ≤ 1

• Every pair of guest crews cannotmeet more than once. For all k, l:

∑

t

ηklt ≤ 1

With B boats and T time periods, the problem has O(BT ) variables and O(BT ) constraints.

A Round-robin tournament

In a round-robin tournament [24], the problem scenario is again a sports tournament in which partici-

pate n teams and which lasts n− 1 weeks. Each week is divided into n/2 periods. The tournament must

satisfy the following three constraints:

• Every team plays exactly once a week.

• Every team plays at most twice in the same period over the tournament.

• Every team plays against every other team only once.

This problem requires only one type of Boolean variable:

vwpxy

Such that: 1 ≤ w ≤ n− 1, 1 ≤ p ≤ n/2 and 1 ≤ x < y ≤ n. For each variable vwpxy, vwpxy = 1 iff team x

plays against team y in period p of week w. This problem requires the following constraints:

3



• In each period of each week occurs exactly one game.

For all 1 ≤ w ≤ n− 1 and 1 ≤ p ≤ n/2:

n∑

x=1

(
n∑

y=x+1

vwpxy

)

= 1

• Each pair of teams play exactly one time during all the tournament. For all 1 ≤ x < y ≤ n:

n−1∑

w=1





n/2
∑

p=1

vwpxy



 = 1

• Each team plays exactly once per week. For all 1 ≤ w ≤ n− 1 and 1 ≤ x ≤ n:

n/2
∑

p=1

(
x−1∑

y=1

vwpxy +

n∑

y=x+1

vwpxy

)

= 1

• Each team plays at most twice per period. For every 1 ≤ x ≤ n and 1 ≤ p ≤ n/2:

n−1∑

w=1

(
x−1∑

y=1

vwpyx +
n∑

y=x+1

vwpxy

)

≤ 2

Note that as opposed to the previous problem which was encoded as an optimization problem, this

problem was encoded as a decision problem.

4



Chapter 2

The SAT problem

2.1 Preliminaries

Definition 1. A Boolean variable is any symbol to which we can assign one of the truth values 0 and 1,

also denoted by FALSE and TRUE, respectively.

Definition 2. Let X be a countable set of Boolean variables. The class of the Boolean formulas over X is

the smallest class which is inductively defined as follows:

• The Boolean constants 0 and 1 are Boolean formulas.

• Every Boolean variable x in X is a Boolean formula.

• If ϕ and ψ are Boolean formulas then (ϕ ∧ ψ), (ϕ ∨ ψ) and (¬ϕ) are Boolean formulas.

Definition 3. A literal is a Boolean formula which is either a Boolean variable, or the complement of a

Boolean variable.

Definition 4. A clause is a disjunction of literals.

Definition 5. A Boolean formula ϕ is said to be in conjunctive normal form (CNF) if it is a conjunction of

clauses.

Definition 6. A Boolean assignment is a mapping AX′ : X ′ → {0, 1}, where X ′ ⊆ X . If X = X ′ then we

say that the assignment AX′ is complete, otherwise AX′ is said to be a partial assignment.

Remark 1. Note that we have used 0 and 1 to denote the syntactic constants and 0 and 1 to denote their

semantic interpretation.

Usually we represent an assignment as a set of pairs. For instance:

AX′ = {(x1, 0) , . . . , (xn, 1)}

5



Definition 7. Given a Boolean formula ϕ, we can obtain a corresponding simplified Boolean formula ap-

plying the following procedure recursively:

• Delete all clauses in which occur the Boolean constant 1.

• Remove all occurrences of the Boolean constant 0 from the clauses in which they occur.

• If the obtained formula is different from the one considered in the beginning of the procedure,

then another recursive step must be applied.

Definition 8. Given a Boolean formula ϕ and an assignment AX′ , the restricted formula ϕ [AX′ ] is the

simplified Boolean formula obtained from ϕ replacing the variables for which AX′ is defined with their

assigned values. Note that an assignment is a mapping from the set of variables to the set {0, 1}, each

element of this set corresponds to the semantic interpretation of each of the Boolean constants. There-

fore, when we say that each variable in the formula is replaced with its assigned value, we are talking

about the corresponding Boolean constant (not its semantic interpretation).

Definition 9. Given a Boolean formula ϕ and a complete assignment AX , the value of ϕ under AX

denoted as v (ϕ [AX ]) is the Boolean value inductively defined as follows:

1. v (ϕ [AX ]) = 0 if ϕ = 0.

2. v (ϕ [AX ]) = 1 if ϕ = 1.

3. v (ϕ [AX ]) = AX (x) if ϕ = x for x ∈ X .

4. If ϕ = (ψ ∨ δ), then v (ϕ [AX ]) = 1 if v (ψ [AX ]) = 1 or v (δ [AX ]) = 1.

5. If ϕ = (ψ ∧ δ), then v (ϕ [AX ]) = 1 if v (ψ [AX ]) = 1 and v (δ [AX ]) = 1.

Remark 2. Note that given a complete assignment AX and a Boolean formula ϕ, the restricted Boolean

formula ϕ [AX ] will correspond to one of the Boolean constants 0 or 1. As such, v (ϕ [AX ]) can also be

defined in the following manner:

1. If ϕ [AX ] = 1, v (ϕ [AX ]) = 1

2. If ϕ [AX ] = 0, v (ϕ [AX ]) = 0

Definition 10. Given a formula ϕ and a partial assignment AX′ , v (ϕ [AX′ ]) is defined as follows:

• If ϕ [AX′ ] = 1, v (ϕ [AX′ ]) = 1

• If ϕ [AX′ ] = 0, v (ϕ [AX′ ]) = 0

• If none of the equalities presented above hold, v (ϕ [AX′ ]) is said to be undefined.

Definition 11. Given a Boolean formula ϕ and an assignment (complete or partial) AX′ , there are three

possible situations:

6



• v (ϕ [AX′ ]) = 0 in which case we say that ϕ is unsatisfied under the assignment AX′ .

• v (ϕ [AX′ ]) = 1 in which case we say that ϕ is satisfied under the assignment AX′ .

• v (ϕ [AX′ ]) is not defined, in which case we say that ϕ is unresolved under the assignment AX′ . This

situation can only happen if AX′ is a partial assignment.

Definition 12. Given a Boolean formula ϕ, we say that ϕ is satisfiable if there is a complete assignment

AX which satisfies ϕ. If ϕ is satisfied under every truth assignment, we say that ϕ is a tautology.

Definition 13. The Propositional Satisfiability Problem (SAT problem) asks whether a given Boolean for-

mula ϕ is satisfiable. In formal language terms:

SAT = {〈φ〉 : φ is a satisfiable Boolean formula}

Where 〈φ〉 represents the encoding of φ.

Definition 14.

CNF-SAT = {〈φ〉 : φ is a satisfiable Boolean formula in conjunctive normal form}

Proposition 1. For each Boolean formula ϕ there exists another Boolean formula ψ in CNF which can

be computed from ϕ in polynomial time and such that ϕ is satisfiable if and only if ψ is satisfiable. In

other words, SAT≤pCNF-SAT [8].

This proposition states that given an instance of the SAT problem, we can compute in polynomial

time an instance of the CNF-SAT problem such that the former formula is satisfiable if and only if the

first formula is satisfiable. Therefore, CNF-SAT solvers are indeed SAT solvers. The algorithm presented

later in this chapter will receive as an argument a Boolean formula in conjunctive normal form. So, from

now on, we will use the terms formula and CNF-formula interchangeably. In this context, it is natural

to think of a formula ϕ as a set of clauses.

Proposition 2 (Cook’s Theorem). CNF-SAT is NP-complete [8].

2.2 A Generic Satisfiability Algorithm

Since SAT is known to be NP-Complete, it is unlikely that there exists any SAT algorithm with poly-

nomial time complexity. Nevertheless, SAT instances that encode real world problems seem to have

some structure that enables efficient solution [33]. In this section we will present a generic satisfiability

algorithm based on the GRASP algorithm [22].

Given a CNF formula ϕ, an algorithm for the satisfiability problem must decide if ϕ is satisfiable and,

if it is, provide an assignment that satisfies ϕ. Using this assignment, a satisfiability checker can verify

in polynomial time that ϕ is indeed satisfiable.

7



Most of the successful SAT solvers [22, 23, 13] are based on the Davis Putnam Longemann Loveland

(DPLL) algorithm. In addition to DPLL, these algorithms use a pruning technique based on the record-

ing of nogood clauses and perform non-chronological backtracking. The DPLL algorithm embodies

three usefull rules [27] which are also used by modern SAT solvers:

1. Early Termination: Given a partial assignment AX′ , we can detect whether a given clause w is

satisfied under all the assignments that contain AX′ , testing if w contains a true literal. Hence, the

formula as a whole can be found satisfiable even before a complete assignment is found.

Similarly, given a partial assignment AX′ , we can detect whether a given clause w is unsatisfied

under all the assignments that contain AX′ , testing if all literals in w are assigned to 0. If a clause

is found unsatisfied under a partial assignment AX′ , we can infer that the corresponding formula

is unsatisfied under all the assignments which include AX′ .

2. Pure Literal Rule: A pure literal is a literal that always appears with the same sign in all clauses.

It is easy to see that if a formula has a satisfying assignment, then it has a satisfying assignment

that assigns all the pure literals to 1.

3. Unit Clause Rule: Given a partial assignment AX′ , a clause w is said to be unit under that assign-

ment if it is unresolved and the number of its unassigned literals (which are commonly referred to

as free literals) is one. Given a unit clause w = (l1 ∨ l2 ∨ · · · ∨ lj ∨ · · · ∨ lk) and a partial assignment

AX′ , such that lj is the only free literal, lj must be assigned to 1 in order to guarantee that w is not

unsatisfied under AX′ . This procedure is called the unit clause rule. The iterated application of

the unit clause rule to a given formula until the set of unit clauses becomes empty or more clauses

become unsatisfied is called Boolean Constraint Propagation (BCP).

It was already stated that given a CNF formula ϕ, an algorithm for the satisfiability problem must

decide if there exists an assignment AX such that ϕ [AX ] = 1, denoted as a satisfying assignment. Start-

ing from an empty truth assignment, a backtrack algorithm examines the space of truth assignments in

order to find a satisfying assignment. It organizes the search for a satisfying assignment by implicitly

maintaining a decision tree. Each node in the decision tree specifies an elective assignment for an unas-

signed variable called a decision assignment. A decision level is associated with each decision assignment

to denote its depth in the decision tree. The first decision assignment is associated with decision level 1.

In each iteration of the search process the following steps are followed:

1. Extend the current partial assignment by making a decision assignment.

2. Extend the current partial assignment performing BCP. The assignments made in this step are re-

ferred to as implied assignments. The deduction process may lead to the identification of one or

more unsatisfied clauses, which imply that the current assignment is not a satisfying one. Such oc-

currence is called a conflict and the associated unsatisfying assignment is called a conflicting assign-
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ment, the clauses which are unsatisfied under the current assignment are referred to as conflicting

clauses.

3. If the current assignment is a conflicting assignment another one must be tried. Therefore, the

current one must be undone. The backtracking mechanism enables the algorithm to retreat from

regions of the search space that do not correspond to satisfying assignments.

Henceforth, the following notation will be used:

1. δ (x) denotes the level at which x is assigned and v (x) denotes the value assigned to x.

2. x = v (x) @δ (x) specifies that the value v (x) is assigned to x at decision level δ (x).

Algorithm 1 follows the steps previously identified. The procedures that are invoked in this algorithm

Algorithm 1 Generic Algorithm for the Satisfiability Problem

if preprocess()=TRUE then
return CONFLICT;

end if
while TRUE do

if decide() then
while deduce()=CONFLICT do

blevel⇐ analyseConflict()
if blevel ≤ 0 then

return UNSATISFIABLE;
else

backtrack(blevel);
end if

end while
else

return SATISFIABLE;
end if

end while

will be explained in great detail in the following sections. However some brief clarifications are stated

bellow:

1. preprocess() performs several changes on the formula received as input to make the search easier.

For instance, it can apply the pure literal rule.

2. decide() makes a decision assignment.

3. deduce() corresponds to the application of BCP.

4. analyseConflict() is invoked when a conflicting assignment occurs. It analyses the conflict and

returns a decision level (blevel), prior to the current level, at which the current conflict is not

verified. If such level cannot be found, analyseConflict() returns 0.

5. backtrack() just performs the necessary updates so that the algorithm can backtrack to the decision

level identified by analyseConflict() and proceed the search process.
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2.3 Choosing a Decision Assignment

In each step of the search, the algorithm must choose a decision assignment. There are several strategies

that can be followed to make such a choice:

1. Select randomly an unassigned literal (this heuristic is commonly denoted as RAND).

2. Select the literal which appears most frequently in unresolved clauses, this strategy is called the

Dynamic Largest Individual Sum, DLIS [22].

3. Choose the literal that directly satisfies the largest number of clauses.

4. Choose the literal which simplifies the largest number of clauses and can lead to more implications

during BCP.

But how can the effectiveness of these decision heuristics be evaluated? Given two decision heuris-

tics we can say that one is better than the other if, in general, given a SAT instance the algorithm using

the first one makes less decision assignments than using the former one. Fewer decisions ought to mean

smarter decisions were made. Nevertheless, not all decisions yield an equal number of BCP operations

and as such a shorter sequence of decision assignments may lead to more BCP operations than a longer

one. Additionally, when choosing a decision heuristic we must also consider its overhead which cannot

be very heavy.

The decision heuristic used by Chaff [23], the Variable State Independent Decaying Sum heuristic

(VSIDS) was the first heuristic suited for lazy data structures which will be introduced in section 2.4. As

such, VSIDS is briefly described bellow:

1. Each variable is associated with a counter representing its activity.

2. When a clause is added to the formula (which only happens when a conflict occurs) the activity of

each one of its literals is incremented.

3. The literal with the highest activity is selected.

4. Ties are broken randomly.

5. Periodically, the activity of each variable in the system is multiplied by a constant smaller than 1.

Therefore, this strategy guarantees that recent increments count more than old ones.

In order to choose the literal with highest activity more quickly, the algorithm must maintain a priority

queue in which the literals are ordered by their activity.

One of the main advantages of learning lies in the fact that the learned clauses drive the search.

Therefore, using this strategy, the algorithm tries to satisfy the conflict clauses, particularly the more

recent ones so as to explore their implications more quickly.

This heuristic helps the algorithm solve the more difficult instances and since it has a very low over-

head, it does not compromise its performance on the easier ones.
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2.4 The Deduction Procedure

When a decision assignment is made, the algorithm must perform BCP, that is, it must apply the unit

clause rule recursively. However, checking all clauses each time a decision assignment is made to deter-

mine if one of them becomes unit is extremely inefficient. Zhang et al [23] suggested a different method.

Given a clause w, they noted that if we pick any two literals not assigned to 0 in w, we can guarantee

that w is not unit1 until one of those two literals (the watched literals) is set to 0. As such, when assigning

a literal to 02, the deduction procedure only needs to analyse the clauses in which it is being watched.

Therefore, for each literal the algorithm keeps the list of clauses in which it is being watched, the watcher

list. These are the clauses which may become unit if the literal is set to 0.

When the deduction procedure analyses a clause after one of its watched literals is set to 0, one of

the following situations may hold:

1. All literals except for the other watched literal are set to 0 and the remaining watched literal is

unassigned. The clause is unit and therefore the remaining unassigned literal is immediately im-

plied.

2. There is a non-false non-watched literal. This literal is chosen to replace the one just assigned to 0.

3. The other watched literal is set to 1. Do nothing.

Figure 2.4 illustrates a sequence of updates of the watched literals of a given clause during a certain

search process.

2.5 Conflict Analysis

2.5.1 Implication Graph

Let the assignment of a variable x be implied due to a clause w = (l1 ∨ · · · lk), which is referred to as

the antecedent clause [22] of x. The antecedent assignment of x, denoted as Aw (x), is defined as the set of

assignments to variables other than x with literals in w. Informally we can say that Aw (x) denotes the

set of assignments which imply the assignment of x. Naturally, the antecedent assignment of a decision

variable is empty. A variable assignment can be expressed as the literal which evaluates to 1 under that

assignment. As such, the antecedent assignment of a variable can be expressed as a set of literals.

The decision level of an implied variable is related to the decision level of the variables in Aw (x) in

the following way:

δ (x) = max{δ (y) | (y, v (y)) ∈ Aw (x)}

1Recall that that w is said to be unit if all but one of its literals are set to 0.
2Note that when we assign a literal to 1, we are assigning its complement to 0.
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x1 x4 x7 x11 x12 x15

x1 = 1@1

x1 x4 x7 x11 x12 x15

x7 = 1@2

x15 = 0@2

x11 = 0@2
x1 x4 x7 x11 x12 x15

x4 = 0@3

x1 x4 x7 x11 x12 x15

Backtrack
to level 2

x1 x4 x7 x11 x12 x15

x7 = 0@2

x12 = 1@2

x1 x4 x7 x11 x12 x15

x4 = 0@3

x1 x4 x7 x11 x12 x15

Figure 2.1: A sequence of updates of the watched literals of a given clause during a certain search process

The implication relationships of variable assignments during the SAT solving process can be expressed

as an implication graph [22]. An implication graph I is defined as follows:

• Each vertex in I corresponds to a variable assignment x = v (x) @δ (x) or to a conflict.

• The predecessors of the vertex x = v (x) @δ (x) are the assignments in Aw (x). The directed edges

from the vertices in Aw (x) to the vertex x = v (x) @δ (x) are labeled with w. Hence, vertices with

no predecessors correspond to decision assignments.

• Each time a conflict occurs a special vertex is added to I (the letter k is generally used as an

identifier of this vertex). If a clause w becomes unsatisfied under the current assignment, in which

case w will be referred to as the conflicting clause [22], Aw (k) denotes the set of assignments to

variables in w. One could say that these are the assignments responsible for the conflict k. Hence,

the predecessors of k in I are the vertices in Aw (k). Again, the edges from the vertices in Aw (k) to

k are labelled with w.

In actual implementations, the implication graph is maintained by associating each assigned non-decision

variable with a pointer to its antecedent clause. By following the antecedent pointers, the implication
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Current Truth Assignment: {x9 = 0@1, x10 = 0@3, x11 = 0@3, x12 = 1@2, x13 = 1@2, · · · }

Current Decision Assignment: {x1 = 1@6}

Constraints:

ω1 : x̄1 ∨ x2

ω2 : x̄1 ∨ x3 ∨ x9

ω3 : x̄2 ∨ x̄3 ∨ x4

ω4 : x̄4 ∨ x5 ∨ x10

ω5 : x̄4 ∨ x6 ∨ x11

ω6 : x̄5 ∨ x̄6

ω7 : x1 ∨ x7 ∨ x̄12

ω8 : x1 ∨ x8

ω9 : x̄7 ∨ x̄8 ∨ x̄13

x9 = 0@1

ω2

x1 = 1@6

ω2

x2 = 1@6

ω3

ω3

ω1

ω4

ω4

ω5

ω5
x3 = 1@6

x4 = 1@6

ω6

ω6

κ

x11 = 0@3

x10 = 0@3

x5 = 1@6

x6 = 1@6

Figure 2.2: Example of a formula, an assignment and the corresponding implication graph

graph can be constructed when needed.

In an implication graph, we say that a vertex a dominates a vertex b iff any path from the vertex

corresponding to the decision assignment at the decision level of vertex a to vertex b needs to go through

a. A vertex a at decision level dl is said to be a Unique Implication Point (UIP) [22] if it dominates the

conflict vertex, which means that any path from the vertex corresponding to the decision assignment

at decision level dl to the conflict vertex needs to go through a. Intuitively, we can say that an UIP at a

certain decision level is the only assignment at that decision level that implies the conflict. The UIPs of

each decision level are ordered starting from the conflict. Therefore, the first UIP of the current decision

level refers to the UIP at the current decision level which is closest to the conflict vertex.

In figure 2.2, besides x1, the only UIP at level 6 is x4. Observe that every path from x1 to k must go

through x4. As such, x4 is the first UIP at decision level 6 and x1 is the second.

2.5.2 Learning

When a conflict occurs, the structure of the implication graph (that is, its connected component which

contains the conflict vertex) is analysed to determine those variable assignments which are responsible

for the conflict. The conjunction of those variable assignments is a sufficient condition for the conflict

to arise. If we take the complement of this new formula we will obtain a clause that is consistent with

the formula and not satisfied under the current assignment. This clause, the conflict clause [22], and its

corresponding assignments are denoted by wC (k) and AwC (k) respectively. Using the conflict clause,

the algorithm identifies a decision level to which it can safely backtrack. Then, the conflict clause is

added to the formula, this process is called learning [22]. Therefore, conflict analysis is the procedure

that finds a reason for a conflict and tries to resolve it. It tells the SAT solver that there exists no solution

for the problem in a certain search space, and indicates a new search space to continue the search.
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x̄1 ∨ x9 ∨ x10 ∨ x11

ω1 : x̄1 ∨ x2 x̄1 ∨ x̄2 ∨ x9 ∨ x10 ∨ x11

ω2 : x̄1 ∨ x3 ∨ x9 x̄2 ∨ x̄3 ∨ x10 ∨ x11

ω3 : x̄2 ∨ x̄3 ∨ x4 x̄4 ∨ x10 ∨ x11

ω4 : x̄4 ∨ x5 ∨ x10 x̄5 ∨ x̄4 ∨ x11

ω5 : x̄4 ∨ x6 ∨ x11 ω6 : x̄5 ∨ x̄6

Figure 2.3: A sequence of resolution steps starting from the conflict vertex of the implication graph
presented in figure 2.2

A new clause is said to be consistent [22] with a given formula if all the assignments that satisfy all

the clauses in the formula also satisfy the new clause (note that the opposite is not always true, there can

be assignments which satisfy the new clause and do not satisfy all the clauses in the formula).

Consider the vertex k from figure 2.2, its antecedent clause is w6, if we replace in w6 one of its literals

by its antecedent literals (that is, the other literals which occur in its antecedent clause), we obtain a

new clause that is consistent with the current formula. As such, we can replace x5 by x10 and x4,

obtaining the clause (x6 ∨ x10 ∨ x4). It is important to note that the procedure just described corresponds

to performing a resolution step on clauses w6 and w4. Hence, the correction of this rule follows directly

from the correction of resolution [26].

When a conflict occurs, resolution may be used to learn a new clause consistent with the formula

which is unsatisfied under the current assignment. Note that to obtain such a clause, the learning pro-

cedure must perform a sequence of resolution steps starting from the conflicting clause and following

the implication graph. If the learning procedure starts from an intermediate vertex and not from the

conflict, it will not obtain a conflict clause. For instance, in figure 2.2, consider the antecedent clause of

x4, w3, after replacing all the occurrences of x2 and x3 in w3 by their antecedent literals, x1 and x9, the

following clause is obtained: (x1 ∨ x9 ∨ x4). Figure 2.3 presents a sequence of resolution steps starting

from the conflict vertex of the implication graph introduced in figure 2.2.

However, when applying a sequence of resolution steps it is necessary to know where to stop. There-

fore, a bipartition of the implication graph must be established [33]. This bipartition has all the decision

assignments in one side (the reason side) and the conflict vertex on the other side (the conflict side). Such

a bipartition is called a cut. When applying resolution, we only replace literals corresponding to assign-

ments that occur on the conflict side (resolution steps are only used to eliminate literals belonging to

the conflict side). As such, choosing the cut is the main feature which distinguishes different learning

schemes.

The conflict clause also helps the algorithm finding the level to which it can safely backtrack. There-
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fore, the learning procedure must use a cut such that the learned clause has only one literal assigned

at the current decision level. When the algorithm backtracks, the learned clause becomes unit and this

literal is forced to flip. Such a clause that causes a flip of the variable is called an asserting clause. The

learning procedure must use a cut such that there is only one vertex on the reason side at the current

decision level that has edges to the conflict side. In other words, any admissible cut must put on the

reason side an UIP of the current decision level and all literals assigned at the current decision level

before the chosen UIP, all the other literals assigned at the current decision level (the ones which were

assigned after the UIP) must be put on the conflict side [33]. Thus, after backtracking, the UIP vertex

becomes unit and makes the clause an asserting clause.

There are several different types of cuts which enable the learning procedure to obtain an assertive

clause. Bellow we describe very briefly some of them:

• Last UIP Cut: All vertices corresponding to assignments made at the current decision level are

put on the conflict side, except for the decision assignment which is put on the reason side. The

decision assignment and all the assignments made in previous decision levels are put on the reason

side.

• Decision Cut: All decision assignments are put on the reason side, everything else is put on the

conflict side.

• 1UIP Cut: Every variable implied after the first UIP of the current decision level (the one which is

closest to the conflict) is put on the conflict side. The others are put on the reason side.

• 2UIP Cut: The current decision level and the previous decision level have their first UIPs just

before the partition.

• 3UIP Cut: It is what we expect it to be.

• All UIPs Cut: Every decision level has its first UIP just before the partition.

• Min Cut: It can also be beneficial to make the conflict clause as short as possible. To learn a

clause as short as possible the learning procedure must use a cut such that the number of edges

which cross it is minimum. This problem can be approached using a typical max-flow/min-cut

algorithm.

It is very important to note that the algorithm cannot learn everything, since the learned clauses will

slow down the deduction procedure. It must learn as much as it can as long as the performance of the

deduction procedure is not very heavily compromised. Learning must be selective [33].

Generally speaking, a short clause contains more information than a longer one. So, we can say

that it is better to learn shorter clauses than longer ones. However, the effectiveness of certain learning

schemes can only be determined through empirical data. Zhang et al [33] suggested that the 1UIP

learning scheme is the most effective one when learning just a single clause.
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2.5.3 Backtracking

It remains yet to clarify how can one use the conflict clause to determine the level to which the algorithm

must backtrack. As explained in the previous section after identifying the conflict (and the conflict

clause) the algorithm must erase all the assignments made at the current decision level (including the

decision assignment). It was also noted that the algorithm must use a learning scheme, such that after

erasing all the assignments made at the current decision level, the learned clause becomes unit and

forces the unit literal to flip. Modern SAT solvers backtrack to the highest decision level lower than the

current one, such that the conflict clause has at least one literal assigned at that level [22]. For instance,

if the algorithm uses a 1UIP learning scheme in figure 2.2, the conflict clause is (x10 ∨ x4 ∨ x11). So, the

algorithm backtracks to decision level 3.

Let β denote the backtrack decision level. If β = d − 1, where d is the current decision level, the search

process backtracks chronologically to the immediately preceding decision level. However, if β < d − 1,

the search process backtracks nonchronologically by jumping back over several levels in the decision tree.

2.5.4 Clause Deletion

Adding clauses to the formula has two major drawbacks:

1. It slows down the deduction process.

2. The size of the formula grows with the number of backtracks. In the worst case, such a growth can

be exponential in the number of variables.

The first issue is not very worrying, since it was empirically verified [22] that for some classes of in-

stances the advantages of learning surpass by far its drawbacks as far as the performance of the algo-

rithm is concerned. However, when solving large SAT instances, the solver may run out of memory. So

periodically the algorithm must remove a few learned clauses.

The formula is divided in two parts: the problem clauses and the learned clauses. Generally, the

problem clauses cannot be removed. However, they can under specific circumstances, for instance sub-

sumption [32].

To choose what clauses to remove, the algorithm may apply one of the following strategies:

1. Assume that an integer parameter k is given. Conflict clauses whose size (number of literals) is no

greater than k are marked green and handled normally. Conflict clauses of size greater than k are

marked red and kept around while they are satisfied, unsatisfied or unit clauses.

2. When a clause is added, it is examined in order to estimate its power to generate new implications.

Shorter clauses convey more information that longer ones. Similarly, if a clause has very few

unassigned literals, it will probably be used in the search before a clause that has a large number

of unassigned literals. So, the algorithm must choose a number n (typically between 100 and 200)
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such that when the number of unassigned literals in a given clause is greater than n, that clause is

deleted.

3. MINISAT [13] uses for clauses a heuristic very similar to the one used by Chaff in the decision

procedure, VSIDS. Each time a learned clause is used to imply an assignment, its activity is incre-

mented. Over time the activities of all clauses are divided by a constant. When the formula gets

too big, the algorithm deletes the clauses which have the lowest activity.

2.6 Restarts

Modern solvers use restarts [15, 23, 13, 22] to escape difficult regions of the search tree. A restart cor-

responds to a halt in the search process and a restart of the analysis maintaining at least some of the

learned clauses. As such, when the algorithm restarts the search, it does not simply repeat what was

done before, because the learned clauses will drive the search in a different direction. Moreover, some

randomness can be added to the decision procedure so as to guarantee that each time the solver restarts

it follows a different path. Almost all recent SAT solvers use restarts. A simple restart policy consists in

establishing a fixed limit k such that after every k conflicts the solver restarts.

Using restarts only provides a modest improvement in typical performance, but substantially im-

proves robustness. That is, they significantly reduce the variability in running time found over collec-

tions of similar instances [17]. To ensure completeness, solvers increment the restart interval each time

the solver restarts. Hence, the solver will eventually perform a complete search with no restart.
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Chapter 3

Pseudo-Boolean Satisfiability and

Optimization

3.1 The Problem

3.1.1 Basic Definitions

A pseudo-Boolean (PB) function is a function that maps n Boolean variables to a real number (for any

positive integer n). Naturally, an integer pseudo-Boolean function maps n Boolean variables to an integer.

A linear Pseudo-Boolean constraint (commonly denoted as PB constraint or LPB constraint) over a set of

Boolean variables X = {x1, · · · , xn} is an inequality that has the following form:

n∑

j=1

aj · lj . b

such that for each j ∈ {1, · · · , n}, aj is an integer coefficient and lj is a literal, b is an integer coefficient

and . is one of the common relational operators (=,≥,≤, > and <). The right side of the constraint is

denoted as the degree of the constraint1. The addition operator and the other relational operators have

their usual arithmetic meaning.

Given a set of PB constraints W over a set of Boolean variablesX , we say that W is satisfiable if there

is an assignment AX , such that all constraints in W are satisfied under AX .

Definition 15. The PB-SAT problem asks whether a given set of PB constraints is satisfiable. In formal

language:

PB-SAT = {〈W 〉 : W is a satisfiable set of PB constraints}

Where 〈W 〉 denotes the encoding of W .

1It is also commonly referred to as rhs.
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Definition 16. The PBO Problem (the Pseudo-Boolean Optimization problem) consists in finding a sat-

isfying assignment to a set of PB constraints that minimizes a given pseudo-Boolean objective function.

3.1.2 Constraints

A linear PB constraint is said to be in normal form when expressed as:

n∑

i=1

ai · li ≥ b

such that for each i ∈ {1, · · · , n}, ai ∈ Z+ and li is a literal and b ∈ Z+. Any PB constraint w can be

converted into the normal form applying the rules specified bellow iteratively:

1. If the relational operator of w is ”=”, w is replaced by two new constraints w1 and w2 which are

equal to w except for the relational operator that in one case corresponds to ≤ and in the other to

≥.

2. If the relational operator of w is ”>”, we replace ”>” by ”≥” and increment the right hand side

(rhs) in one unity.

3. If the relational operator of w is ”<”, we replace ”<” by ”≤” and decrement the right hand side

(rhs) in one unity.

4. Every literal li in w associated with a negative coefficient is replaced by
(
1− li

)2.

5. If none of the operations presented above can be applied and the rhs of the inequality is negative,

then w is always satisfied and therefore can be removed from the formula.

6. If the relational operator of w is ”≤” we must multiply both members of the inequality by −1.

This procedure allows the mapping in linear time of all pseudo-Boolean constraints into the normalized

formulation. As such, from now on, when talking about a pseudo-Boolean constraint we will always

mean a linear pseudo-Boolean constraint in the normal form.

Given a partial assignment AX′ and a constraint w =
∑

i ai · li ≥ b, w is said to be:

• satisfied if
∑

li=1 ai ≥ b;

• unsatisfied if
∑

li 6=0 ai < b;

• unresolved if
∑

li 6=0 ai ≥ b.

2Note that for any literal li, li =
“

1 − li

”

.
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Cardinality Constraints

A cardinality constraint is a constraint on the number of literals which are true among a given set of

literals. There are three kinds of cardinality constraints:

• The constraint atleast (k, {l1, · · · , ln}) requires that at least k literals among {l1, · · · , ln} be true.

This constraint corresponds to the Pseudo-Boolean constraint:
∑

i li ≥ k.

• The constraint atmost (k, {l1, · · · , ln}) requires that at most k literals among {l1, · · · , ln} be true,

which corresponds to Pseudo-Boolean constraint:
∑

i li ≤ k.

• The constraint exactly (k, {l1, · · · , ln}) requires that exactly k literals among {l1, · · · , ln} be true,

which corresponds to Pseudo-Boolean constraint:
∑

i li = k.

It can easily be proved that all three types of cardinality constraints can be expressed as an atleast con-

straint. Note that:

atmost (k, {l1, · · · , ln}) ≡ atleast
(
n− k, {l1, · · · , ln}

)

exactly (k, {l1, · · · , ln}) ≡ atleast (k, {l1, · · · , ln}) ∧ atmost (k, {l1, · · · , ln})

Therefore, any cardinality constraint can be expressed as a pseudo-Boolean constraint in the normal

form.

Conversely a Pseudo-Boolean constraint w in the normal form such that all its coefficients are equal

is actually a cardinality constraint. For instance, let w be
∑

i a0 · li ≥ b, then w is equivalent to the

following constraint:
∑

i

li ≥ k

where k = d b
a0

e. Hence, this constraint is equivalent to the cardinality constraint atleast
(

d b
a0

e, {l1, · · · , ln}
)

.

As such, a cardinality constraint is a special kind of pseudo-Boolean constraint.

It can be showed that a general PB constraint can be encoded as a conjunction of cardinality con-

straints [14]. Similarly a cardinality constraint can be encoded as a conjunction of clauses. In both cases

it can also be showed that the size of the encoding can be exponential in the number of variables. Thus

a cardinality constraint encoding can be exponentially smaller than a clause encoding and a general PB

encoding can be exponentially smaller than a cardinality constraint encoding.

Clauses

The clause l1 ∨ l2 ∨ · · · ∨ ln can be express as the cardinality constraint atleast (1, {l1, · · · , ln}). Indeed,

every clause can be expressed as a cardinality constraint.
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3.1.3 Inference Rules

One of the most important features of modern PB-SAT solvers is the ability to derive a new PB constraint

from a set of PB constraints.

An Inference Rule is a procedure which allows us to infer a new constraint α from a finite set of

constraints ∆ (with a specific structure). If for any proper set of premises ∆ the inference rule produces

a conclusion α such that all the assignments which satisfy ∆ also satisfy α we say that the inference rule

is sound. Additionally, if the set of assignments which satisfy α is equal to the set of assignments which

satisfy ∆ we say that the inference rule does not convey any loss of information.

Using inference rules allows adding new constraints to the formula. These learned constraints will

help the algorithm identify future conflicts more quickly and therefore they help pruning the search

space. If there are assignments that satisfy the premises but do not satisfy the conclusion, adding the

conclusion to the formula will possibly change the solution set. As such, the soundness of every infer-

ence must be proved before using it in the search process.

Let x denote any given literal, the following inference rules can be stated:

• Negation:

x = 1− x

• Idempotence:

x · x = x

• Bounds:
x ≥ 0

−x ≥ −1

The correction of these first three rules follows directly from the definition of literal. Note that the

negation rule was used when the procedure for clause normalization was introduced.

The following two rules are extensively used in normal integer arithmetic.

• Addition:
∑

i ai · li ≥ b
∑

i
ci · li ≥ d

∑

i (ai + ci) · li ≥ (b+ d)

• Multiplication:
∑

i
ai · li ≥ b

α > 0

α ∈ N
∑

i α · ai · li ≥ α · b
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Consider a constraint similar to a pseudo-Boolean constraint but such that its coefficients can be real

numbers,
∑
ri · li ≥ b. Firstly, it is important to note that ∀ri ∈ R,

∑

idrie ≥ d
∑

i rie, from which the

following inequalities can be directly inferred:

∑

i

dri · lie ≥
⌈∑

i

ri · li
⌉

≥ dbe

If we also note that given a real number ri and a literal li, drie · li = dri · lie, the following rule can be

easily obtained:

• Rounding:
∑

i ri · li ≥ b
∑

idrie · li ≥ dbe

• Division:
∑

i
ai · li ≥ b

α > 0

α ∈ N
∑

i
dai

α e · li ≥ d
b
αe

• Multiplication/Division:
∑

i ai · li ≥ b

α > 0
∑

idα · aie · li ≥ dα · be

Example 1. In this example it is illustrated the application of the division rule followed by the rounding

rule:
3x1 + x2 + x3 + x4 + x5 ≥ 6

x1 + 1
3x2 + 1

3x3 + 1
3x4 + 1

3x5 ≥ 2

x1 + x2 + x3 + x4 + x5 ≥ 2

The addition and the multiplication rules can be used together as a single rule such that given a set

of PB constraints it will allow us to infer any linear combination of this set of constraints. This new rule,

which will be referred to as the Cutting Planes Rule [7], can be used to eliminate one or more variables

that occur in the premises and as such it can be viewed as an extension of resolution from clauses to PB

constraints.

• Cutting Planes:
∑

i ai · li ≥ b
∑

i
ci · li ≥ d

α > 0

β > 0
∑

i
(α · ai + β · ci) · li ≥ (α · b+ β · d)
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Generally, when applying this rule, α and β are chosen in order to eliminate one variable which occurs

simultaneously in both constraints (in one of them it must occur its corresponding positive literal and

in the other its negative one). Suppose a ·x appears in the first constraint and c · x appears in the second

one and we want to eliminate x from both constraints then α and β must be chosen in the following

way:

• α = lcm(a,c)
a = c

gcd(a,c)

• β = lcm(a,c)
c = a

gcd(a,c)

Where lcm (a, c) and gcd (a, c) denote the least common multiple and the greatest common divisor be-

tween a and c respectively.3

Example 2. This example presents two different applications of the cutting planes rule.

1 · (x4 + 3x5 + 2x3 ≥ 3)

2 · (x1 + x2 + x3 ≥ 2)

2x1 + 2x2 + x4 + 3x5 ≥ 5

1 · (3x1 + 2x2 + x3 + x4 ≥ 3)

1 · (x3 + x4 ≥ 1)

3x1 + 2x2 + 2x4 ≥ 3

• Saturation:
∑

i
ai · li ≥ b

aj > b

b · lj +
∑

i6=j ai · li ≥ b

Given a PB constraint, if one of its literals has a coefficient greater than the rhs, then if this literal is

assigned to 1, the constraint is immediately satisfied. However, if the corresponding coefficient is equal

to the rhs, the constraint is also immediately satisfied. As such, all coefficients greater than the rhs can

be replaced by the rhs of the constraint.4

Example 3. This example illustrates the application of the saturation rule and one application of the

Multiplication/Division rule which yields the same result.

3x1 + x2 + x3 ≥ 2

2x1 + x2 + x3 ≥ 2

3We have used the following identity: lcm (a, c) = a·c
gcd(a,c)

4The saturation rule can be replaced by iterated applications of the multiplication/division rule, with α chosen in such a way
that all coefficients greater than the rhs are decremented in at least one unity and all the others are left unchanged. These two
conditions are satisfied when (b − 1)/b < α ≤ b/(b + 1).
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3x1 + x2 + x3 ≥ 2

2
3 (3x1 + x2 + x3 ≥ 2)

2x1 + 2
3x2 + 2

3x3 ≥
4
3

2x1 + x2 + x3 ≥ 2

It is important to emphasize that the saturation rule corresponds to a sequence of applications of the

Multiplication/Division rule, in this example the corresponding sequence has only one element, which

does not always happen.

• Coefficient Reduction:
∑

i ai · li ≥ b

aj > 0
∑

i6=j ai · li ≥ (b− aj)

• Partial Coefficient Reduction:

∑

i
ai · li ≥ b

aj > 0

aj > a > 0

(aj − a) · lj +
∑

i6=j ai · li ≥ (b− a)

Both this two previous rules can be obtained combining the cutting planes rule with the bounds rule.

Example 4.

x1 + x2 + x4 + 2x7 + 2x8 ≥ 5

x1 + x2 + 2x7 ≥ 2

• Cardinality Constraint Reduction

∑n
i=1 ai · li ≥ b

∑β−1
i=1 ai < b ≤

∑β
i=1 ai

∑n
i=1 li ≥ β

In the inference rule stated above it is assumed that literals in a constraint are ordered decreasingly

according to the value of their coefficients. As such, a cardinality constraint reduction derives a cardi-

nality constraint from a general PB constraint. It calculates the minimum number of literals that must

be assigned to 1 for the constraint to be satisfied.

Example 5.
6x1 + 5x2 + 4x3 + 3x4 + 2x5 + x6 ≥ 17

x1 + x2 + x3 + x4 + x5 + x6 ≥ 4

Chai and Kuehlmann further note [7] that some of the literals with the smallest coefficients may be
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safely removed from the derived cardinality constraint. This procedure will be carefully explained later

in this chapter.

3.2 A Generic Pseudo-Boolean Satisfiability Algorithm

The huge progresses which SAT solvers have experimented in the last decade contributed decisively to

the development of efficient PB solvers which exhibit the same general structure of SAT solvers. Due to

its great similarity to the SAT problem, we will only consider the PB-SAT problem in this first approach.

A PB-SAT solver, just like any SAT solver, must search the space of all Boolean assignments. This

search is organized in the exact same way that was explained in section 2.2. Therefore, the generic

algorithm presented in that section can also be used by any PB-SAT solver. It was already stressed many

times that the main features of an efficient SAT solver that uses a DPLL-like algorithm are efficient BCP

(which is implemented in the deduce() procedure) and conflict-based learning (which is implemented

in the analyseConflict() procedure). Naturally, the deduce and the analyseConflict() procedures must be

adapted in order to handle PB constraints. This adaptation is far from obvious and it will be carefully

explained in the following sections.

3.3 Extending BCP to Pseudo-Boolean Constraints

Suppose w is a PB constraint:

• LT [w] = {li | li = 1 and li occurs in w}

• LF [w] = {li | li = 0 and li occurs in w}

• LU [w] = {li | li is an unassigned literal which occurs in w}

• ST [w] =
∑

li∈LT
ai

• SF [w] =
∑

li∈LF
ai

• SU [w] =
∑

li∈LU
ai

• amax[w] = max{ai | li occurs in w}

• lmax[w] denotes the literal associated with amax[w]

• aU
max[w] = max{ai | li ∈ LU [w]}

• lUmax[w] denotes the literal associated with aU
max[w]

From now on, when talking about the concepts defined above it is assumed that they are associated with

a constraint w and as such w is omitted. For instance, instead of using LT [w], it is used LT .
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Given a partial assignment AX′ and a PB constraint w, we define s as the slack of w under AX′ in the

following way: s = ST + SU − b, where b denotes the rhs of the constraint. It is quite easy to see that,

given a partial assignment AX′ and a constraint w, w is unsatisfied under AX′ if its slack is negative, this

condition can be formally expressed as follows:

ST + SU − b < 0

ST + SU < b (3.1)

Given an assignment AX′ , a Pseudo-Boolean constraint is said to be unit under AX′ , if it is unresolved

under that assignment and at least one of its literals must be assigned to 1 for the constraint to be

satisfied.

It is easy to see that if the slack of a certain constraint is lower than aU
max the corresponding literal,

lUmax, must be immediately implied since assigning it to 0 would make the constraint unsatisfied. We can

express this condition as follows:

s < aU
max

ST + SU − b < aU
max

ST + SU < b+ aU
max (3.2)

The fastest known method for BCP in SAT is based on the watch-literal strategy. This strategy ex-

ploits the fact that a clause cannot become unit as long as two of its literals remain unassigned. So the

algorithm must only watch two literals in each clause. Similarly, a cardinality constraint w with degree

b cannot become unit while (n− (b+ 1)) of its literals are not assigned to 0, where n denotes the number

of literals in w. Thus, it is only necessary to watch b+ 1 literals in w5.

As opposed to cardinality constraints and clauses in which it is only necessary to watch a fixed num-

ber of literals, in general PB constraints a variable number of literals must be watched. Moreover, it is

important to minimize the number of watched literals in each constraint so as to simplify the propaga-

tion. As such, to extend the watch-literal strategy from clauses to general PB constraints, it is necessary

to specify a procedure that given a PB constraint w selects a set of literals, say LW , such that while none

of those literals is assigned to 0, w cannot become unit. Given a set of watched literals LW , the Watch

Sum (SW ) is defined as the sum of the coefficients of the literals in LW :

SW =
∑

li∈LW

ai

Note that ST + SU ≥ SW . So, it follows directly from (3.1) that a constraint is not unsatisfied while:

ST + SU ≥ SW ≥ b

5Note that when a cardinality constraint w becomes unit all its remaining unassigned literals are immediately implied.
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SW ≥ b (3.3)

Similarly, it follows directly from (3.2) that a constraint is not unit while:

ST + SU ≥ SW ≥ b+ aU
max

SW ≥ b+ aU
max (3.4)

Therefore, it can be concluded that the algorithm must watch in each constraint enough literals in order

to satisfy (3.4).

Using this strategy the algorithm maintains for each literal a list of the constrains in which it is being

watched, the watcher list, and when a literal is assigned to 0 the algorithm must analyse its watcher list

in order to find which constraints become unit.

For each constraint it must check if SW ≥ b + aU
max. If it is not, the steps presented bellow must be

followed:

1. Increase the value of SW by watching more literals. As such, new positive or unassigned literals

must be added to LW until (3.4) holds.

2. Decrease the value of aU
max by implying more literals. If after adding all unassigned and positive

literals to LW , (3.4) remains unsatisfied, the algorithm must successively imply the unassigned

literals in LW in decreasing order of coefficient. Therefore, a unit PB constraint can imply more

than one literal.

Algorithm 2 illustrates the steps that must be followed when analyzing a constraint after one of its

literals (which will be referred to as lt) is assigned to 0, whereas a practical use of this algorithm can be

checked in figure 3.1.

Algorithm 2 BCP with Pseudo-Boolean Constraints

LW ⇐ LW \{lt}
SW ⇐ SW − at

aU
max ⇐ max{ai | li ∈ LU}

while SW < b+ aU
max ∧ LW 6= LT ∪ LU do

as ⇐ max{ai | li ∈ (LT ∪ LU ) \LW}
SW ⇐ SW + as

LW ⇐ LW ∪ {ls}
end while
if SW < b then

return CONFLICT
end if
while SW < b+ aU

max do
imply (lmax)
aU
max ⇐ {ai | li ∈ LW ∧ li 6= 1}

end while
return NOCONFLICT
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6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12

SW = 19 ≥ 12 + 6

Decision: x3 = 1@1

6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12

SW = 18 ≥ 12 + 6

Decision: x4 = 0@2

6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12

SW = 16 < 12 + 6

Implication: x1 = 1@2

6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12

SW = 16 < 12 + 5

Implication: x2 = 1@2

6 x1 5 x2 5 x3 3 x4 2 x5 2 x6 x7 ≥ 12 SW = 16 ≥ 12 + 2

Figure 3.1: A sequence of updates of the watched literals of a certain PB constraint

It must be noted that each time a literal is implied the value of aU
max may change in each constraint in

which it is being watched6 and if it does, it must be updated. Updating aU
max has, however, a very large

overhead. Chai and Kuehlmann, who proposed this watch-literal strategy [7] concluded that despite

being very effective with clauses and cardinality constraints, the watch-literal strategy (at least the one

they presented) could not be efficiently applied to general PB constraints. As such, they implemented

in their solver (Galena) a Watch All Literals scheme, similar to the one previously suggested by Aloul et

al [2].

Sakallah and Sheini proposed the following alteration to this watch-literal strategy [29]. Instead of

using aU
max in (3.4), they use amax. Hence, it is no longer necessary to compute aU

max and as such prop-

agation becomes much faster. Note that this strategy is a compromise between the Watch All Literals

scheme and the one previously explained since it requires that the algorithm to watch in each constraint

more literals than strictly necessary (amax ≥ aU
max).

3.4 Conflict Analysis

In this section the learning techniques used in SAT are extended to the PB-SAT problem.

6Note that in algorithm 2 literals are added to LW in decreasing order of coefficient and as such lUmax is always watched.
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3.4.1 Implication Graph

In this section it will be used the definition of Implication Graph presented in section 2.5.1 so it will not

be repeated. Therefore, we will only clarify some subtleties.

When a clause w becomes unit, its remaining unassigned variable, say x, is immediately implied

and Aw (x) will contain all the assignments to variables other than x corresponding to literals in w.

All those literals are assigned to 0 and the conjunction of all those assignments implies the assignment

of x. However, when a variable implication is triggered by a general PB constraint w, its antecedent

assignment will only contain assignments to variables corresponding to false literals in w. Note that

even if w is unit, there can be other unassigned variables in w besides the implied variables and there

can even be assignments corresponding to true literals in w. Naturally, these assignments must not be

included in the antecedent assignments of the implied variables.

Similarly, when a PB constraint w becomes unsatisfied, the antecedent assignment of its correspond-

ing conflict will be the set of all assignments corresponding to false literals in w.

Using this slightly modified definition of antecedent assignment, the implication graph can be con-

structed as detailed in section 2.5.1:

1. Every assignment x = v (x) @δ (x) corresponds to a vertex.

2. Given an assignment x = v (x) @δ (x), all vertices corresponding to assignments in Aw (x) have

edges to the vertex associated with this assignment.

3. Given a conflict vertex k, all vertices corresponding to assignments in Aw (k) have edges to k.

In figure 3.2 it is illustrated a PB-SAT problem with clauses and PB constraints and an implication graph

which shows the sequence of implications triggered by the assignment to x1.

3.4.2 Clause Learning

The clause learning scheme here presented is equal to the learning scheme used by SAT solvers.

First of all, we must establish a partition of the implication graph. We will always use a 1UIP cut,

since it is considered the most effective one [33].

Starting from Aw (k) the algorithm applies recursively the following step:

• Replace in Aw (k) all assignments which occur in the conflict side of the partition by their an-

tecedent assignments.

The recursive application of this procedure corresponds to a backward traversal of the implication graph

starting at k. At the end, Aw (k) will contain one unique assignment made at the current level. Since

the conjunction of those assignments yields a conflict, the clause corresponding to its negation must be

consistent with the PB formula.
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Current Truth Assignment: {x5 = 1@1, x10 = 0@2, x1 = 0@3, · · · }

Current Decision Assignment: {x1 = 0@3}

Constraints:

ω1 : 3x1 + 2x̄2 + x3 + x̄4 ≥ 3

ω2 : 2x2 + x8 + x9 + 2x10 ≥ 2

ω3 : x̄3 + x4 + x7 ≥ 2

ω4 : x2 + x̄5 + x6 ≥ 1

ω5 : x̄6 + x̄4 + x̄9 ≥ 1

ω6 : x1 + x3 + x4 ≥ 1

ω1

ω2

ω2

ω4

ω4

ω5

ω5

ω6

ω6

ω3

ω3
x1 = 0@3 x2 = 0@3

x10 = 0@2

x5 = 1@1

x6 = 1@3

x1 = 1@3

x4 = 0@3

x1 = 0@3

x3 = 1@3

k

Figure 3.2: Example of a PB formula, a partial assignment, a decision assignment and the corresponding
implication graph

As discussed in section 2.5.2, this kind of implication graph analysis can be viewed as a sequence of

resolution steps guided by the original implication sequence in reverse order. In each resolution step

one implied variable is eliminated and, since the implied variables are eliminated in reverse order, one

can safely remove them from the current assignment7. If we denote the violated constraint by V and

the unit implying constraints leading to the conflict by U1, . . . , Uk, the conflict analysis procedure can be

expressed as follows:

R1 = resolve (V, U1, x1)

R2 = resolve (R1, U2, x2)

· · ·

Rk = resolve (Rk−1, Uk, xk)

Where Ri denotes the resolvent at each resolution step (also denoted as Accumulator Constraint) and

xi the variable to be eliminated. It must be stressed that the implied variables x1, · · · , xk are consid-

ered in reverse order and as such after each resolution step the corresponding eliminated variable can

be removed from the current assignment. The sequence of clauses generated by the resolution steps

correspond to a sequence of cuts in the implication graph8.

Therefore, the correction of the learned clause (i.e., its consistency with the PB formula) is guaran-

teed by the correction of resolution [26]. However, when considering general PB constraints instead of

7Note that when erasing an assignment, the sequence of assignments it triggered must also be erased.
8Any of these clauses can reproduce the conflict and thus could be added to the PB formula.

30



clauses, resolution cannot be directly applied. So, in order to be able to apply resolution, a preprocessing

step must be performed before each resolution step.

Firstly, it must be noted that every PB constraint can be trivially reduced to a clause using the fol-

lowing rule:
∑

i aili ≥ b

∨n
i=1li

This rule can be viewed as a corollary of the division rule. In the corresponding application of the

division rule one must choose α ≥ amax.

Before applying this rule, the coefficient reduction rule must be used to eliminate all positive and

unassigned literals except for the implied literal. When performing coefficient reduction on a general

PB constraint it is possible to weaken too much the constraint, obtaining a tautology. Since the con-

straint that is being considered is unit,
(
ST + SU − a

U
max

)
< b is true. As our goal is to eliminate all

literals in (LT ∪ LU ) \{lUmax} from the constraint, after applying coefficient reduction the right side of

the inequality will be decremented in ST +SU −aU
max which is lower than b. Therefore, reducing an unit

PB constraint to a clause in the way just described, never yields a tautology9.

In example 6 we resume the example presented in figure 3.2 by showing an application of clause

learning to the implication graph there presented.

Example 6.

Step 0 A (k) = {x3, x4}

Step 1 A (k) = {x1, x4}

Step 2 A (k) = {x1, x6, x9}

Step 3 A (k) = {x1, x2, x6, x10}

Step 4 A (k) = {x1, x2, x5, x10}

Step 5 A (k) = {x1, x5, x10}

• Current Assignment: {x1, x2, x3, x4, x5, x6, x9, x10}

Variable to Eliminate: x3

w3 : x3 + x7 + x4 ≥ 2

w′
3 : x3 ∨ x4

w6 : x1 ∨ x3 ∨ x4

R1 = Res (w′
3, w6, x3) = x1 ∨ x4

• Current Assignment: {x1, x2, x4, x5, x6, x9, x10}

Variable to Eliminate: x4

w5 : x6 ∨ x4 ∨ x9

R2 = Res (R1, w5, x4) = x1 ∨ x6 ∨ x9

9A PB constraint is a tautology if its rhs is lower than 1.
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• Current Assignment: {x1, x2, x5, x6, x9, x10}

Variable to Eliminate: x9

w2 : 2x2 + 2x10 + x8 + x9 ≥ 2

w′
2 : x2 ∨ x10 ∨ x9

R3 = Res (R2, w
′
2, x9) = x1 ∨ x2 ∨ x6 ∨ x10

• Current Assignment: {x1, x2, x5, x6, x10}

Variable to Eliminate: x6

w4 : x2 ∨ x5 ∨ x6

R4 = Res (R3, w4, x6) = x1 ∨ x2 ∨ x5 ∨ x10

• Current Assignment: {x1, x2, x5, x10}

Variable to Eliminate: x2

w1 : 3x1 + 2x2 + x3 + x4 ≥ 3

w′
1 : x1 ∨ x2

R5 = Res (R4, w
′
1, x2) = x1 ∨ x5 ∨ x10

x1 ∨ x̄5 ∨ x10

3x1+2x2+x3+x4≥3
x1∨x2

x1 ∨ x2 ∨ x5 ∨ x10

x2 ∨ x5 ∨ x6 x1 ∨ x2 ∨ x6 ∨ x10

x2 ∨ x10 ∨ x9 x1 ∨ x6 ∨ x9

x6 ∨ x4 ∨ x9 x1 ∨ x4

x1 ∨ x3 ∨ x6
x3+x7+x4≥2

x3∨x4

Figure 3.3: A sequence of resolution steps starting form the conflict vertex of the implication graph
presented in example 6

Finally, it is important to emphasize that using this learning scheme the algorithm can always learn

an assertive constraint, since after erasing all the assignments made at the current level, the learned con-

straint becomes unit.

3.4.3 Pseudo-Boolean Learning

In modern SAT solvers and PB-SAT solvers the learned constraints occupy a central role in the search

process by pruning the search. There is an exponential gap between clauses and general PB constraints

[14]. So, from a theoretical point of view, it is likely that general PB constraints have a greater pruning

power than clauses.

When a conflict occurs the algorithm uses the learned constraints to:
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Current Truth Assignment: {x8 = 1@1, · · · }

Current Decision Assignment: {x6 = 0@2}

Constraints:

ω1 : 3x1 + 2x2 + x7 + 2x8 ≥ 3

ω2 : 3x1 + x3 + x5 + x9 ≥ 3

ω3 : x2 + x3 + x6 ≥ 2

ω3

ω3

ω1

ω2

ω1

ω1

x6 = 0@2

x2 = 0@2

x3 = 0@2 x1 = 0@2

x8 = 1@1

κ

Figure 3.4: A PB formula, a PB partial assignment and the corresponding implication graph

• Determine to which level it must backtrack.

• Imply a new assignment after backtracking.

Therefore each learned constraint must exhibit two properties:

• It must be unsatisfied under the current assignment.

• It must be an assertive constraint.

The learning scheme presented in section 3.4.2 satisfies both those properties.

The operation on PB constraints which corresponds to clause resolution is Cutting Planes. As such,

to learn a general PB constraint, the algorithm must perform a sequence of cutting plane steps instead

of a sequence of resolution steps. Again, in each cutting plane step one implied variable is eliminated.

The implied variables are considered in reverse order, i.e., we start at the last assignment and finish at

the first UIP.

However, when performing cutting planes, the resulting constraint may not be unsatisfied under the

current assignment [7]. In this situation, the learned constraint will not be able to flip any variables after

erasing all the assignments made at the current decision level, which is essential for driving the search

forward.

To understand why it is possible to get a constraint which is not unsatisfied under the current as-

signment during the sequence of cutting plane steps, we examine a concrete example based on the

implication graph presented in figure 3.4.

Example 7.

• Current Assignment: {x1, x2, x3, x6, x8}
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1 · w1 : 1 (3x1 + 2x2 + x7 + 2x8 ≥ 3) slack = −2

1 · w2 : 1 (3x1 + x3 + x5 + x9 ≥ 3) slack = 2

2x2 + x3 + x5 + x7 + 2x8 + x9 ≥ 3 slack = 0

• Current Assignment: {x2, x3, x6, x8}

1 (2x2 + x3 + x5 + x7 + 2x8 + x9 ≥ 3) slack = 0

1 · w3 : 1 (x2 + x3 + x6 ≥ 2) slack = 0

x2 + x5 + x6 + x7 + 2x8 + x9 ≥ 3 slack = 0

• Current Assignment: {x2, x6, x8}

1 (x2 + x5 + x6 + x7 + 2x8 + x9 ≥ 3) slack = 0

1 · w3 : 1 (x2 + x3 + x6 ≥ 2) slack = 0

x3 + x5 + 2x6 + x7 + 2x8 + x9 ≥ 4 slack = 0

Note that in the example presented in figure 3.4 one of the implying constraints (w1) is oversatisfied,

therefore after combining it with the accumulator constraint, the slack of the resulting constraint is not

negative. So, before performing each cutting plane step, the conflict analysis procedure must examine

both constraints to determine if the slack of the resulting constraint is still negative.

Consider the application of a cutting plane step to two arbitrary constraints w1 with slack s1 and w2

with slack s2 and suppose α and β are used as the multiplying factors. In this situation, the slack of the

resulting constraint, here denoted by sr, is given by linearly combining the slacks of w1 and w2:

sr = (α · s1) + (β · s2)

Using the procedure just presented, before the application of each cutting plane step, the learning al-

gorithm verifies if the resulting constraint is still unsatisfied under the current assignment. If it is not,

the implied constraint must be reduced to lower its slack. This process is guaranteed to work since the

repeated reduction of constraints will eventually lead to a simple clause with slack 0 10.

An iterative procedure to weaken an over-satisfied implying constraint wi is suggested by Chai and

Kuehlmann [7]. In each iteration of this procedure sacc (n+ 1) = (α · sacc (n)) + (β · si) is evaluated11.

If sacc (n+ 1) < 0, then the cutting plane step may be applied. If it is not, then another coefficient

reduction must be performed in order to lower the slack of wi in at least d(sacc (n+ 1) + 1) /βe unities.

After applying this reduction the values of α and β must be updated, since they depend on the value of

the coefficient of the variable being eliminated, say xi. However the extent of the next possible reduction

depends on the new values of α and β. Therefore, a conservative over-approximation of the slack value

is suggested in order to break this cyclic dependency.

10This was already discussed in section 3.4.2.
11The variables α and β correspond to the multiplying factors used in the application of the cutting plane step.
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If the procedure just described is applied to example 7, before the first cutting plane step, a coefficient

reduction must be performed on constraint w2, since 2 · 1 + (−2) · 1 = 0. Therefore, the slack of w2 must

be decremented in at least one unity (0 + 1 = 1), which can be easily done removing one of its non-false

literals, say x9. As a result, the following constraint is generated:

w′
2 : 2x1 + x3 + x5 ≥ 2 slack = 1

The values of α and β must be updated to 2 and 3 respectively. The algorithm may now apply the

cutting plane step, since:

α · s1 + β · s′2 = 2 · (−2) + 3 · 1 = (−1) < 0

Sakallah and Sheini implemented in their solver, Pueblo [29], a different approach. Before each cutting

plane step, they test the slack of the resulting constraint; if its slack is not negative, they always reduce

the implying constraint to a clause. Note that when reducing an implying constraint to a clause, the

slack of the obtained clause is always 0.

In the beginning of this subsection it was stressed the importance of learning an assertive constraint,

that is a constraint for which there is a decision level in which the given constraint becomes unit. How-

ever the conflict analysis procedure may learn a non-assertive constraint (this happens both in Pueblo

and Galena). Consider the following constraint:

x1 (0@4) + x2 + x3 (0@3) + x6 (0@3) + x0 (0@3) ≥ 3

It is easy to see that if the algorithm backtracks to decision level 3, after erasing all the assignments made

at that decision level, this constraint does not become unit. In fact, this constraint cannot become unit,

no matter the level to which the algorithm backtracks.

Chai and Kuehlmann [7] suggested the following scheme: when analyzing the implication graph

instead of stopping the sequence of cutting plane steps at the first UIP, they only stop when the learned

constraint is an assertive one. However, they do not provide further details. Moreover, Daniel Le Berre

and Anne Parrain [5] who implement in their solver, sat4jPseudo, a PB learning scheme similar to the one

just described, state: ‘For PB constraints, we do not have an efficient incremental way to do it [detect

assertive constraints].’

3.4.4 Cardinality Constraint Learning

It was already discussed that learning general PB constraints slows down the deduction procedure be-

cause the watch literal strategy is not as efficient with general PB constraints as it is with clauses or

cardinality constraints [7]. Note that in a clause, as well as in a cardinality constraint, it is only necessary

to watch a fixed number of literals, whereas in a general PB constraint the number of watched literals

varies during the execution of the algorithm.
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In theory, a general PB constraint corresponds to an exponential number of cardinality constraints

and a cardinality constraint corresponds to an exponential number of clauses. However, in practice

the gap between cardinality constraints and clauses is typically larger than the gap between general PB

constraints and cardinality constraints when considering learned constraints which are highly redun-

dant [7].

In Galena, Chai and Kuehlmann choose to learn cardinality constraints instead of general PB con-

straints. The method used to learn cardinality constraints in Galena is similar to the method used to

learn general PB constraints described in section 3.4.3. Additionally, it is introduced a post-reduction

procedure, which converts the learned constraint into a weaker cardinality constraint.

Algorithm 3 converts a general PB constraint into a cardinality constraint. This algorithm first deter-

mines the minimum number of literals that must be assigned to 1 for the constraint to be satisfied and

then it drops as many low-coefficient literals as possible.

Algorithm 3 Cardinality Constraint Reduction Algorithm
x← 0
k′ ← 0
L′ ← L
while x < b ∨ L 6= ∅ do
amax ← max{ai|li ∈ L}
last← amax

L← L\{lmax}
x← x+ amax

k′ ← k′ + 1
end while
guard = x− last
while guard+ min{ai|li ∈ L′} < b do
amin = min{ai|li ∈ L′}
guard+ = amin

L′ = L′\{lmin}
end while
return

∑

li∈L′ li ≥ k
′

Note that the first loop of algorithm 3 corresponds to the cardinality constraint reduction presented

in section 3.1.3, whereas the second loop allows the algorithm to strengthen the cardinality constraint

obtained after the execution of the first loop (which is implicitly maintained). Therefore, it is important

to clarify the rationale behind the second loop.

Consider the application of the cardinality constraint reduction described in section 3.1.3 to a general

PB constraint:
n∑

i=1

ai · li ≥ b

Suppose the resulting constraint is:
n∑

i=1

li ≥ m

To obtain a stronger cardinality constraint, we must apply to the original PB constraint successive coeffi-
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cient reductions, so as to drop as many low-coefficient literals as possible, obtaining a new PB constraint:

n′

∑

i=1

ai · li ≥ b
′

However, it must be guaranteed that when applying a cardinality constraint reduction to the new PB

constraint, the obtained cardinality constraint has also degree m. Therefore, the following inequalities

must hold:
m−1∑

i=1

ai < b′ (3.5)

m∑

i=1

ai ≥ b
′ (3.6)

Observe that when performing a coefficient reduction, the value of b is decremented, so b′ ≤ b. There-

fore, (3.6) is immediately satisfied. It is also important to note that (3.5) limits the number of possible

coefficient reductions, since the value of b can only be decremented in b − b′ unities. Using (3.5), it can

easily be obtained an upper bound for the extent of the coefficient reductions:

m−1∑

i=1

ai < b′

−

(
m−1∑

i=1

ai

)

> −b′

b−

(
m−1∑

i=1

ai

)

> b− b′

(
m−1∑

i=1

ai

)

+ (b− b′) < b (3.7)

Note that (3.7) is used as the guard of the second loop of algorithm 3.
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Example 8.
6x1 + 5x2 + 4x3 + 3x4 + 2x5 + x6 ≥ 17

x1 + x2 + x3 + x4 + x5 + x6 ≥ 4

(b− b′) < b−
∑3

i=1 ai

(b− b′) < 17− 15

(b− b′) ≤ 1

6x1 + 5x2 + 4x3 + 3x4 + 2x5 + x6 ≥ 17

6x1 + 5x2 + 4x3 + 3x4 + 2x5 ≥ 16

x1 + x2 + x3 + x4 + x5 ≥ 4

In example 8 we resume example 5, showing the application of the strengthening technique just pre-

sented to a given cardinality constraint. In this example it is performed a normal cardinality constraint

reduction, then it is calculated the extent of the possible coefficient reduction. Since b − b′ = 1, we can

only eliminate from the original PB constraint literal x6. After applying this coefficient reduction, a new

cardinality constraint reduction is applied, which yields a cardinality constraint stronger than the one

previously obtained.

It is possible that the resulting cardinality constraint is not unsatisfied under the current assignment.

In this situation the algorithm proceeds as was described in section 3.4.3.

3.4.5 Backtracking

Suppose the conflict analysis procedure is always able to learn an assertive constraint. After learning

such a constraint, the algorithm can use it to determine to which decision level it must backtrack. It

must backtrack to a decision level at which the learned constraint becomes unit12.

However, a general PB constraint may become unit in multiple decision levels. Consider the follow-

ing constraint:

wi : 3x1 (x1 = 0@3) + 2x2 (x2 = 0@2) + x3 ≥ 4

If the algorithm backtracks to decision level 3, wi becomes unit and the assignment x1 = 1 is implied.

However, if the algorithm backtracks to decision level 2, again, w1 becomes unit and x1 = 1 is also

implied.

Galena performs the largest possible backtrack to an earlier decision level. This allows the algorithm

to maintain as an invariant the fact that each variable is implied at the earliest possible decision level.

It is important to note that as opposed to general PB constraints which may become unit in multiple

decision levels, cardinality constraints and clauses can only become unit in one decision level. Therefore,

12Since we are considering that the conflict analysis procedure always learns an assertive constraint, there must be a level at
which the constraint becomes unit.
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backtracking is easier when handling clauses or cardinality constraints.

3.4.6 A Hybrid Approach

Sheini and Sakallah [29] noted that any solver which performs PB learning can be modified to addition-

ally perform clause learning with no significant extra overhead. Moreover, despite the greater pruning

power of PB learning, clause learning has its own advantages: it always produces an assertive constraint

and it does not compromise as heavily the propagation procedure as general PB learning. As such, in

their solver Pueblo, they implement a hybrid learning method. Each time a conflict occurs, not only does

Pueblo learn a general PB constraint, but it also learns a clause.

In order to perform clause learning efficiently, during the sequence of cutting plane steps, Pueblo

maintains a special set XF which stores the false literals in the accumulator constraint (note that these

literals correspond to the current cut in the implication graph). At each cutting plane step, the algorithm

eliminates one implied variable. Simultaneously, this implied variable is replaced in XF by its an-

tecedent assignment. The overall learning process terminates as soon as the first UIP is reached which

is automatically detected inside the clause learning procedure. At this point, the clause stored in XF is

unit and the accumulator constraint corresponds to the learned PB constraint. The backtracking level is

determined processing together the learned PB constraint and the learned clause.

As opposed to Galena which does not always stop the implication graph analysis at the first UIP (it

continues the backward search until it finds an assertive constraint), Pueblo can always stop at the first

UIP, since at the first UIP, the learned clause is guaranteed to be an assertive constraint.

Before applying a cutting plane step, Pueblo checks if the slack of the resulting constraint is negative.

If it is not, Pueblo immediately reduces the current implying constraint to a clause with slack 0, thereby

avoiding the iterated application of coefficient reduction steps described in section 3.4.3.

In example 9 it is presented an application of the Pueblo’s learning algorithm to the conflict illustrated

in figure 3.5.

Example 9.

• Step 0:

Current Partial Assignment: {x1, x3, x4, x5, x6, x7, x8, x9, x10, x11}

Variable to Eliminate: x11

Accumulator Constraint: x2 + x5 + x8 + x11 ≥ 3
︸ ︷︷ ︸

w4

slack = −2

Implying Constraint: x11 + x9 + x10 ≥ 1
︸ ︷︷ ︸

w1

slack = 0

XF = {x5, x8, x11}
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Current Truth Assignment: {x3 = 0@1, x6 = 0@2, x9 = 0@3, · · · }

Current Decision Assignment: {x1 = 1@4}

Constraints:

ω1 : x9 + x10 + x11 ≥ 1

ω2 : x6 + x7 + x8 ≥ 1

ω3 : x3 + x4 + x5 ≥ 1

ω4 : x2 + x5 + x8 + x11 ≥ 3

ω5 : x1 + x4 + x7 + x10 ≥ 3

ω5

ω5

ω5

ω3

ω3

ω2

ω1

ω1

ω2

ω4

ω4

ω4

x1 = 1@4

x3 = 0@1

x4 = 0@4

x7 = 0@4

x10 = 0@4

x9 = 0@3

x11 = 1@4

x5 = 1@4

x8 = 1@4
κ

x6 = 0@2

Figure 3.5: A PB formula, a PB partial assignment and the corresponding implication graph

1 (x2 + x5 + x8 + x11 ≥ 3) slack = −2

1 (x9 + x10 + x11 ≥ 1) slack = 0

x2 + x5 + x8 + x9 + x10 ≥ 3 slack = −2

• Step 1:

Current Partial Assignment: {x1, x3, x4, x5, x6, x7, x8, x9, x10}

Variable to Eliminate: x8

Accumulator Constraint: x2 + x5 + x8 + x9 + x10 ≥ 3 slack = −2

Implying Constraint: x6 + x7 + x8 ≥ 1
︸ ︷︷ ︸

w2

slack = 0

XF = {x5, x8, x9, x10}

1 (x2 + x5 + x8 + x9 + x10 ≥ 3) slack = −2

1 (x6 + x7 + x8 ≥ 1) slack = 0

x2 + x5 + x6 + x7 + x9 + x10 ≥ 3 slack = −2

• Step 2:

Current Partial Assignment: {x1, x3, x4, x5, x6, x7, x9, x10}

Variable to Eliminate: x5

Accumulator Constraint: x2 + x5 + x6 + x7 + x9 + x10 ≥ 3 slack = −2
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Implying Constraint: x3 + x4 + x5 ≥ 1
︸ ︷︷ ︸

w3

slack = 0

XF = {x5, x6, x7, x9, x10}

1 (x2 + x5 + x6 + x7 + x9 + x10 ≥ 3) slack = −2

1 (x3 + x4 + x5 ≥ 1) slack = 0

x2 + x3 + x4 + x6 + x7 + x9 + x10 ≥ 3 slack = −2

• Step 3:

Current Partial Assignment: {x1, x3, x4, x6, x7, x9, x10}

Variables to Eliminate: x4, x7, x10

Accumulator Constraint: x2 + x3 + x4 + x6 + x7 + x9 + x10 ≥ 3 slack = −2

Implying Constraint: x1 + x4 + x7 + x10 ≥ 3
︸ ︷︷ ︸

w5

slack = 0

XF = {x3, x4, x6, x7, x9, x10}

1 (x2 + x3 + x4 + x6 + x7 + x9 + x10 ≥ 3) slack = −2

1 (x1 + x4 + x7 + x10 ≥ 3) slack = 0

x1 + x2 + x3 + x6 + x9 ≥ 3 slack = −2

• Results:

Learned PB constraint: x1 + x2 + x3 + x6 + x9 ≥ 3 slack = −2

Learned clause: x1 ∨ x3 ∨ x6 ∨ x9

3.4.7 Backtracking Revisited

Pueblo’s learning scheme requires a specific backtracking strategy since instead of one constraint it learns

two different constraints. There are two main scenarios to consider:

1. The learned PB constraint is an assertive constraint.

2. The learned PB constraint is not an assertive constraint.

The Learned PB Constraint is an Assertive Constraint

The earliest decision level in which the learned PB constraint (wp) becomes unit is denoted by lp and

the decision level in which the learned clause (wc) becomes unit is denoted by lc. In this situation the

backtracking level is computed in the following way: min (lc, lp). After backtracking:

1. If lc = lp, both constraints become unit and as such both their implications are propagated.

2. If lc < lp, only wc becomes unit and as such only the implications triggered by wc are propagated.

41



3. If lc > lp, only wp becomes unit and as such only the implications triggered by wp are propagated.

In example 9 the algorithm learns the following constraints:

x1 (0@4) + x2 + x3 (0@1) + x6 (0@2) + x9 (0@3) ≥ 3

x1 (0@4) ∨ x3 (0@1) ∨ x6 (0@2) ∨ x9 (0@3)

It is easy to see that in this situation lc = 3 and lp = 2. As such, according to the backtracking scheme

just presented the algorithm must backtrack to decision level 2.

The Learned PB Constraint is not Assertive

In this situation there are two different possibilities:

1. If wp is not unsatisfied at decision level lc, the algorithm backtracks to decision level lc and the

implications triggered by wc are propagated.

2. If wp is unsatisfied at decision level lc there are two different strategies that can be followed:

• The algorithm backtracks to decision level lc and in this decision level it applies the conflict

analysis procedure to wp.

• The algorithm backtracks to the highest decision level in which wp is not unsatisfied. In this

decision level neither wp nor wc are unit, as such the algorithm must make a new decision

assignment. If the algorithm uses this strategy, it must never erase the learned clause and PB

constraint so as to ensure completeness. Plueblo uses this strategy.

3.4.8 Constraint Deletion

This subject was already discussed for SAT solvers in section 2.5.4. Since the problem constraints cannot

generally be deleted13, any PB solver which only performs clause learning may use one of the dele-

tion strategies there presented. Therefore, it is important to clarify the constraint deletion strategies

performed by PB solvers which implement PB learning.

First of all, it is very important to note that a general PB constraint uses much more memory than

a clause, since a general PB constraint has coefficients of arbitrary size. Moreover, as was already seen,

general PB constraints are much harder to propagate.

Consider the following extension of the clause deletion strategy used by MINISAT:

1. Each PB constraint has associated an activity counter.

2. Each time a PB constraint is used to imply a conflict its activity is incremented.

13They can under certain circumstances. For instance, subsumption.
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3. Over time the activities of all PB constraints are divided by a constant.

4. When the activity of a certain PB constraint drops below a certain threshold, that constraint is

erased.

• If a hybrid approach is being used the corresponding clause is not erased from the PB formula.

This strategy is implemented in Pueblo.

• If a pure PB learning algorithm is being used, before erasing a PB constraint, it is reduced

to a clause which is stored in the PB formula and only then may the algorithm erase the PB

constraint. This strategy is suggested by Chai and Kuehlmann [7].

Both this strategies limit the time spent in propagating PB constraints and delegate the role of the

dropped constraints to their corresponding clauses.

5. Every time the solver restarts it increments the threshold. Hence, the amount of PB constraints

that the algorithm can learn.

3.4.9 PB Learning Techniques in Practice

There are several solvers which learn cardinality or general pseudo-Boolean constraints. Chai and

Kuehlmann [7] implement in Galena a cardinality constraint learning scheme. Daniel Le Berre and Anne

Parrain [5] implement in sat4jPseudo a pure PB learning scheme, very similar to the one implemented

in Galena. However they do not perform the final post-reduction that is performed in Galena and that

converts the learned PB constraint into a cardinality constraint. Finally, Sheini and Sakallah [29] use in

Pueblo a hybrid approach.

In ”The First Evaluation of Pseudo-Boolean Solvers” [20], Pueblo was found to be the best solver on

decision problems. It also performed very well on optimization problems, except for PBO instances

containing big integers (integers bigger than 230), on which it was not evaluated. Vasco Manquinho and

Olivier Roussel conclude that: ‘All in all, in this combined categories [proving optimality and proving

unsatisfiability], Pueblo has the best results’.

Galena, however, performed very poorly, both on decision and optimization problems. Since Galena

uses a watch all literals scheme and Pueblo uses a more sophisticated watch literal scheme, cardinality

constraint learning cannot be just yet discarded as an efficient learning technique.

In ”The second Evaluation of Pseudo-Boolean Solvers”, Pueblo was again the best PB solver on deci-

sion problems and it also performed reasonably well on optimization problems. However, sat4jPseudo

‘was well behind of other solvers for optimal answers’. Daniel Le Berre and Anne Parrain evaluated

sat4jPseudo with clause learning instead of PB learning under the same conditions and got much better

results. They argue that since most of the benchmarks are not pure pseudo-Boolean problems14, clause

14they have clauses, cardinality constraints and PB constraints.
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learning is only needed to deal with the clausal part of such problems and PB learning is not needed at

all.

The results obtained by Anne Parrain and Daniel Le Berre are very disturbing when considering the

excellent results of Pueblo. Nevertheless, they provide three major reasons for the bad performance of

their solver:

• It is very difficult to detect an assertive PB constraint.

• In the conflict analysis, maintaining a conflicting constraint needs additional processing.

• Manipulation of PB constraints is very costly, since they use arbitrary precision integers.

The learning scheme used by Pueblo, solves the first two issues and does not have to cope with the third

one, since Pueblo does not deal with big integers.

Hence, the main goal of this thesis is to help understanding the usefulness of learning techniques in

solving PBO and PB-SAT instances.
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Chapter 4

Implementation Issues

A PB solver is a very complex piece of software which tries to solve efficiently a very hard problem.

Hence, every implementation detail plays an important role in the solver overall performance, thus

requiring carefull study and examination. This chapter does not address all the implementation issues

which arose in the course of this work, but only those considered to be more important, not only because

of their impact in the performance of the solver but also because of their theoretical interest.

4.1 Generating the Implication Graph

It is important to emphasize that when a literal is implied to 0, all the constraints in which it is being

watched must be analysed (according to the procedure described in algorithm 2 presented in section 3.3)

and other literals may have to be implied. These literals are added to a list - the unit list. In each iteration

of the propagation procedure one literal is removed from the unit list and all the operations that must be

done in order to imply this literal are carried away. Each literal kept in the unit list must be associated

with the constraint by which it is implied, in order to implicitly maintain the implication graph. The

propagation procedure finishes when this list becomes empty.

Naturally, the generated implication graph depends on the behaviour of the unit list:

• If the unit list has a FIFO (first in first out) behaviour, the implication graph will be built in a

breadth-first search way.

• If the unit list has a LIFO (last in first out) behaviour, the implication graph will be built in a depht-

first search way.

No matter what kind of learning scheme is being used, the learned constraint will always depend on

the structure of the implication graph. As such, we implemented in bsolo both these strategies in order

to draw conclusions about their relative efficiency.
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Figure 4.1 presents a formula and partial assignment, whereas figures 4.2 and 4.3 present two dif-

ferent possible implication graphs corresponding to the given formula and partial assignment. The first

implication graph is built in a depth-first search way, while the second one is built in a breath-first search

way. Both implication graphs are preceded by the sequence of unit lists that were considered during the

propagation procedure.

When generating the implication graph in a breath-first search way, one can guarantee that there is

no other possible implication graph such that the length of the longest path between the decision assign-

ment vertex and the conflict vertex is lower than the one considered. As such, the learned constraint

is probably determined using a smaller number of constraints. Considering the formula and decision

assignment presented in figure 4.1, it is possible to verify that if the implication graph is generated in a

breath-first search way, the learned constraint is determined using five constraints. If it is generated ia a

depth-first search way, the learned constraint is determined using nine constraints (ω1 is used twice).

Current Truth Assignment: {x1 = 0@1}

Current Decision Assignment: {x1 = 0@1}

Constraints:

ω1 : x1 + x2 + x3 + x4 ≥ 3

ω2 : x̄2 + x6 ≥ 1

ω3 : x̄3 + x̄6 + x7 ≥ 1

ω4 : x̄4 + x5 ≥ 1

ω5 : x̄5 + x̄6 + x̄7 ≥ 1

ω6 : x̄5 + x8 ≥ 1

ω7 : x̄8 + x9 ≥ 1

ω8 : x̄9 + x10 ≥ 1

ω9 : x6 + x̄8 + x̄9 + x̄10 ≥ 1

Figure 4.1: Example of a PB formula, a partial assignment and a decision assignment

4.2 Dealing with Large Coefficients

When performing general PB Learning or any learning scheme that requires performing a sequence

of cutting plane steps each time a conflict occurs, the coefficients of the learned constraints may grow

very fast. Note that in each cutting plane step two PB constraints are linearly combined. Given two

constraints:
∑

i ai · li ≥ b and
∑

i ci · li ≥ d, the size of the largest coefficient of the resulting constraint

may be max{b·d,maxi{ai}·maxi{ci}} in the worst case. Therefore, it is easy to see that during a sequence

of cutting plane steps the size of the coefficients of the accumulator constraint may, in the worst case,

grow exponentially in the number of cutting plane steps (which is of the same order of the number of

literals assigned at the current level).

Hence, one problem that may occur during the resolution of the formula and particularly in the con-

flict analysis procedure is integer overflow. To ensure that this problem does not occur it was established

in our versions of bsolo a maximum coefficient size (we have used 106). Therefore, every time the solver

performs a cutting plane step all the coefficients of the resulting constraint are checked in order to find

if one of them is bigger than the established limit. If it is, the solver repeatedly divides the constraint by
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Unit List 1 : {(x2, ω1), (x3, ω1), (x4, ω1)}

Unit List 2 : {(x2, ω1), (x3, ω1), (x5, ω4)}

Unit List 3 : {(x2, ω1), (x3, ω1), (x8, ω6)}

Unit List 4 : {(x2, ω1), (x3, ω1), (x9, ω7)}

Unit List 5 : {(x2, ω1), (x3, ω1), (x10 , ω8)}

Unit List 6 : {(x2, ω1), (x3, ω1), (x6, ω9)}

Unit List 7 : {(x2, ω1), (x3, ω1), (x̄7, ω5)}

Unit List 8 : {(x2, ω1), (x3, ω1), (x̄3, ω3)}

ω1 ω1

ω4

ω6 ω5

ω7 ω9

ω8 ω9

ω9

ω5
ω3

ω3

ω1

κ
x1 = 0@1

x4 = 1@1

x5 = 1@1

x8 = 1@1

x9 = 1@1

x10 = 1@1 x6 = 1@1

x7 = 0@1

x3 = 0@1

Figure 4.2: Example of an implication graph built in a depth-first search way

2 until its largest coefficient is lower than a second maximum coefficient size (we have used 105). When

dividing a constraint by 2, it is being used the division rule presented in section 3.1.3.

During the conflict analysis the accumulator constraint must always have negative slack. However

the division rule does not preserve the slack of the resulting constraint, since it does not guarantee that

the slack of the resulting constraint is equal to the slack of the original one, which can be verified in

example 10.

Example 10.
3x1(0@1) + 3x2(0@1) + 3x3(1@1) + x4(1@1) ≥ 5 slack = −1

2x1(0@1) + 2x2(0@1) + 2x3(1@1) + x4(1@1) ≥ 3 slack = 0

As such, before dividing by 2 a coefficient associated with a slack contributing literal, the solver

must check if it is odd. In this case it must perform a coefficient reduction step before the division (note

that the coefficient reduction rule when applied to slack contributing literals preserves the slack). This

technique is illustrated in example 11.

Example 11.

3x1(0@1) + 3x2(0@1) + 3x3(1@1) + x4(1@1) ≥ 5 slack = −1

3x1(0@1) + 3x2(0@1) + 2x3(1@1) ≥ 3 slack = −1

2x1(0@1) + 2x2(0@1) + x3(1@1) ≥ 2 slack = −1
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Unit List 1 : {(x2, ω1), (x3, ω1), (x4, ω1)}

Unit List 2 : {(x3, ω1), (x4, ω1), (x6, ω2)}

Unit List 3 : {(x4, ω1), (x6, ω2)}

Unit List 4 : {(x6, ω2), (x5, ω4)}

Unit List 5 : {(x5, ω4), (x7, ω3)}

Unit List 6 : {(x7, ω3), (x̄7, ω5), (x8, ω6)}

ω1

ω1

ω1

ω2

ω4

ω3

ω3

ω5

ω5

κ

x1 = 0@1

x2 = 1@1

x3 = 1@1

x4 = 1@1

x6 = 1@1

x5 = 1@1

x7 = 1@1

Figure 4.3: Example of an implication graph built in a breath-first search way

4.3 Eliminating non-false Literals

Besides all the learning schemes described in section 3.4 we tried yet a different one, in which a final

sequence of coefficient reduction steps is applied to the learned constraint in order to eliminate all slack

contributing literals. As explained in section 4.2, the coefficient reduction rule, when applied to elim-

inate slack contributing literals, preserves the slack of the constraint to which it is applied. As such,

each time a conflict occurs, this learning scheme allows the solver to learn a smaller contraint that also

captures the conflict. Since smaller constraints are easier to propagate this learning scheme appears to

be another compromise between clause learning and general PB Learning.

When using a general PB learning scheme, not only does the learned constraint eliminate partial

assignments which only include literals that imply the conflict, but it can also eliminate partial assign-

ments that include slack contributing literals, that is, non-false literals. Consider the implication graph

presented in figure 4.4. If the solver applies a general PB learning scheme, it is able to learn the following

constraint:

x3 + 2x4 + x̄5 ≥ 2

It is easy to see that this constraint excludes the partial assignment which caused the conflict:

AwC (k) = {x5 = 1, x4 = 0}

However this constraint also elminates an additional conflicting assignment: it excludes the assignment

{x3 = 0, x4 = 0}, which includes a slack contributing literal (x3). When using a clause learning scheme

or even a learning scheme similar to the one proposed in this section, the learned constraint prevents

the solver from repeating a partial assignment that led to a conflict. However, when using a general PB

learning scheme, the learned constraint can additionally prevent conflicting partial assignments before
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Current Truth Assignment: {x3 = 1@1, x5 = 1@2}

Current Decision Assignment: {x4 = 0@3}

Constraints:

ω1 : x1 + x4 + x5 ≥ 1

ω2 : x1 + x2 + x3 ≥ 2

ω3 : x4 + x2 ≥ 1
ω1

ω3

ω1

ω2

ω2

x5 = 1@2

x4 = 0@4

x1 = 1@4

x2 = 0@3

κ

Figure 4.4: A PB formula, a PB partial assignment and the corresponding implication graph

they are tried [12]. Hence, after eliminating all non-false literals, the prunning power of the resulting

constraint is lower than it is before. Nevertheless, its overhead to maintain is smaller.

4.4 Heuristic Backtracking

Heuristic backtracking [6, 18] consists of determining the backtrack level using heuristic information

about the most recently recorded constraint. In this work, we have implemented two different heuristics:

1. H1: The backtrack level is determined selecting the decision level with the largest number of

occurrences in the learned constraint.

2. H2: The backtrack level is determined selecting the decision level corresponding to the literal with

the highest activity. The activity of each literal is computed using a VSIDS-like heuristic.

Both heuristic backtracking schemes were implemented on top of a version of the solver which uses a

hybrid learning scheme. Every time a conflict occurs, if the backtracking level associated with the PB

constraint is not lower than the one associated with the clause, the solver performs a heuristic backtrack-

ing step. Our work concerning heuristic backtracking was mainly exploratory, since both these versions

did not show promising results, it was not carried away.

When performing heuristic backtracking the completeness of the algorithm is not guaranteed. Note

that complete algorithms can establish unsatisfiability if given enough CPU time, whereas incomplete

algorithms cannot.

Completeness techniques for heuristic backtracking can be organized in two classes:

1. Making recorded constraints non-deletable. This solution may yield an exponential growth in the

number of recorded constraints.

2. Increasing the interval between applications of different backtracking schemes. Using this scheme

the algorithm normally performs conflict directed backtracking and every time a given threshold

is reached it performs an heuristic backtracking step, after this step the threshold is incremented.
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4.5 An Initial Classification Step

In the course of this thesis we have implemented different versions of the solver corresponding to dif-

ferent learning schemes. Each one of these versions proved to be more effective than the others for some

group of instances. One can easily conclude that versions of the solver using different learning schemes

behave better than the others depending on some characteristics of the instances given as input. For

instance, a cardinality constraint learning scheme is more appropriate to deal with an instance with a

large number of cardinality constraints than a clause learning scheme. As such, we used the algorithm

C4.5 [25] to generate a decision tree that given a PB instance, determines which version of the solver

is more appropriate to it, in order to develop an “instance aware” PB solver. The classification of each

instance is done according to the following attributes:

• Number of variables;

• Number of constraints;

• Number of clauses;

• Number of cardinality constraints;

• Number of general PB constraints;

• Number of literals;

• Number of watched literals.

Since these are the attributes which define the structure of the formula.

The algorithm C4.5 outputs a file containing the description of the decision tree, using this file our

program generates the code of a C++ function which receives as input the attributes stated above and

outputs the corresponding classfication. Using this C++ file, we developed a new version of the solver

which aggregates the best versions of the solver.
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Chapter 5

Experimental Resutls

5.1 Results Presentation

This section presents the experimental results of applying different learning schemes to several classes

of instances, which only include small integers (that is, integers smaller than 230). Experimental results

concerning heuristic backtracking are also presented and compared with the standard conflict directed

backtracking approach. All these learning schemes as well as the different backtracking heuristics were

implemented on top of bsolo, a state of the art PB solver. All versions of the solver were run on a Intel

Xeon 5160 server (3.0GHZ, 1333Mhz, 4GB) running Red Hat Enterprise Linux WS 4. The CPU time limit

for each instance was set to 1800 seconds.

The solver can output one of four possible answers [20]:

1. “s SATISFIABLE”: the solver has found a solution but either there is no function to optimize or it

cannot prove that this solution gives the least value of the objective function.

2. “s OPTIMUM FOUND”: the solver has found a model and it can prove that no other solution will

give a value of the objective function strictly less than the one obtained with this model.

3. “s UNSATISFIABLE”: the solver can prove that the formula has no solution.

4. “s UNKNOWN”: the solver is unable to tell anything about the formula.

The experimental results presented in tables 5.1, 5.2, 5.3, 5.4 and 5.6 correspond to the small inte-

ger non-optimization benchmarks from PB’07 evaluation [20]. As such, the results in each cell de-

note the number of benchmarks SAT/UNSAT/UNKNOWN for each class of instances. The exper-

imental results presented in tables 5.7 and 5.8 correspond to the small integer optimization bench-

marks from PB’07 evaluation [20]. Therefore, the results in each cell denote the number of benchmarks

OPT/SAT/UNSAT/UNKNOWN for each class of instances.

Table 5.1 presents the results obtained for three different versions of the solver which perform a

hybrib learning scheme very similiar to the one performed by Pueblo. While version PB1.1 generates the
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Table 5.1: Multiple approaches to general PB learning
Benchmark PB1.1 PB1.2 PB2
armies 3/0/9 5/0/7 5/0/7
dbst 15/0/0 15/0/0 15/0/0
FPGA 34/20/3 36/20/1 35/1/21
pigeon 0/11/9 0/18/2 0/1/19
progressive party 4/0/2 4/0/2 4/0/2
reduced 14/0/0 14/0/0 14/0/0
robin 3/0/3 3/0/3 4/0/2
tsp 40/1/59 40/5/55 40/43/17
uclid 1/40/9 1/42/7 1/43/6
vdw 1/0/4 1/0/4 1/0/4
wnqueen 32/68/0 32/68/0 32/68/0
Total 147/140/98 151/153/81 151/156/78

Table 5.2: Heuristic Backtracking
Benchmark PB1.2 PB3.1 PB3.2
armies 5/0/7 5/0/7 4/0/8
dbst 15/0/0 15/0/0 15/0/0
FPGA 36/20/1 36/21/0 36/20/1
pigeon 0/18/2 0/19/1 0/14/6
progressive party 4/0/2 1/0/5 1/0/5
reduced 14/0/0 14/0/0 14/0/0
robin 1/0/5 2/0/4 1/0/5
tsp 40/5/55 39/2/59 39/2/59
uclid 1/42/7 1/40/9 1/49/0
vdw 1/0/4 1/0/4 1/0/4
wnqueen 32/68/0 32/68/0 32/68/0
Total 151/153/81 146/150/89 144/153/88

implication graph in a depth-first search way, versions PB1.2 and PB2 do it in a breath-first search way.

Additionally, version PB2 performs a final sequence of coefficient reductions in order to eliminate all

non-false literals.

On top of version PB1.2 we developed two new versions which perform heuristic backtracking.

Version PB3.1 implements the backtracking heuristic introduced in section 4.4 and identified as H1 while

version PB3.2 implements H2. Results can be checked in table 5.2.

On top of versions PB1.2 and PB2 we implemented a final cardinality constraint reduction corre-

sponding to versions CARD1.2 and CARD2 respectively. Results can be checked in table 5.3.

In table 5.4 the results of all different learning schemes are presented. Version CL1 corresponds to

the original version of the solver in which the implication graph is generated in a depth-first search way,

while in version CL2 it is generated in a breath-first search way. In version COMB it is applied an initial

classification step in order to select the best fitting learning scheme.

In table 5.5 we present the number of instances that each one of the best versions can solve for each

class of instances followed by the total time that it takes to solve them (note that the times corrrespond-
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Table 5.3: Cardinality Constraint Learning
Benchmark PB1.2 CARD1.2 PB2 CARD2
armies 5/0/7 6/0/6 5/0/7 6/0/6
dbst 15/0/0 15/0/0 15/0/0 15/0/0
FPGA 36/20/1 36/21/0 35/1/21 36/1/20
pigeon 0/18/2 0/19/1 0/1/19 0/1/19
progressive party 4/0/2 4/0/2 4/0/2 3/0/3
reduced 14/0/0 14/0/0 14/0/0 14/0/0
robin 3/0/3 2/0/4 4/0/2 3/0/3
tsp 40/5/55 40/44/16 40/43/17 40/44/16
uclid 1/42/7 1/43/6 1/43/6 1/42/7
vdw 1/0/4 1/0/4 1/0/4 1/0/4
wnqueen 32/68/0 32/68/0 32/68/0 32/68/0
Total 151/153/81 151/195/39 151/156/78 151/156/78

Table 5.4: An overview of the results of all the different learning schemes
Benchmark CL1 CL2 CARD1.2 PB1.2 PB2 COMB
armies 5/0/7 4/0/8 6/0/6 5/0/7 5/0/7 7/0/5
dbst 15/0/0 15/0/0 15/0/0 15/0/0 15/0/0 15/0/0
FPGA 36/2/19 36/2/19 36/21/0 36/20/1 35/1/21 36/20/1
pigeon 0/2/18 0/2/18 0/19/1 0/18/2 0/1/19 0/18/2
progressive party 4/0/2 3/0/3 4/0/2 4/0/2 4/0/2 3/0/3
reduced 14/0/0 14/0/0 14/0/0 14/0/0 14/0/0 14/0/0
robin 3/0/3 4/0/2 2/0/4 3/0/3 4/0/2 4/0/2
tsp 40/33/27 40/50/10 40/44/16 40/5/55 40/43/17 40/50/10
uclid 1/39/10 1/40/9 1/43/6 1/42/7 1/43/6 1/42/7
vdw 1/0/4 1/0/4 1/0/4 1/0/4 1/0/4 1/0/4
wnqueen 32/68/0 32/68/0 32/68/0 32/68/0 32/68/0 32/68/0
Total 151/144/90 150/162/73 151/195/39 151/153/81 151/156/78 153/198/34

ing to the instances that a version of the solver is unable to solve are not considered in the total time).

In table 5.6 the results of the best known solvers can be checked and compared with our best version.

Finally, table 5.7 presents the results obtained for the best versions of the solver, whereas table 5.8

presents the results of the best version of the solver and of several other solvers.

5.2 Results Analysis

5.2.1 Generating the Implication Graph

It is easy to verify that the versions of the solver which generate the implication graph in a breath-first

search way exhibit better results than the other versions. This has probably to do with the fact that, as

discussed in section 4.1, when generating the implication graph in a breath-first search way, the learned

constraint is probably generated using a smaller number of constraints.

53



Table 5.5: Time results for the best learning schemes
Benchmark CL2 CARD1.2 PB1.2 PB2 COMB
armies 4/1540 6/2642 5/419 5/3922 7/2400
dbst 15/2061 15/2066 15/2070 15/2074 15/2072
FPGA 38/557 57/26 56/34 36/1342 56/15
pigeon 2/501 19/361 18/331 1/334 18/1571
progressive party 3/27 4/17 4/75 4/12 3/28
reduced 14/0 14/0 14/0 14/0 14/0
robin 4/225 2/2 3/217 4/1722 4/1382
tsp 90/46832 84/46589 45/8682 83/45587 90/46895
uclid 41/2597 44/5099 43/5537 44/4957 43/4746
vdw 1/185 1/178 1/182 1/183 1/181
wnqueen 100/3482 100/3847 100/871 100/3612 100/782
Total 312/58005 346/60827 304/18419 307/63746 351/60077

Table 5.6: The Results of other solvers
Benchmark bsolo Pueblo minisat+ PBS4
armies 7/0/5 6/0/6 8/0/4 9/0/3
dbst 15/0/0 15/0/0 7/0/8 15/0/0
FPGA 36/20/1 36/21/0 33/3/21 26/21/10
pigeon 0/18/2 0/13/7 0/2/18 0/20/0
progressive party 3/0/3 6/0/0 5/0/1 3/0/3
reduced 14/0/0 14/0/0 14/0/0 14/0/0
robin 4/0/2 3/0/3 4/0/2 3/0/3
tsp 40/50/10 40/60/0 39/46/15 40/52/8
uclid 1/42/7 1/42/7 1/46/3 1/44/5
vdw 1/0/4 1/0/4 1/0/4 1/0/4
wnqueen 32/68/0 32/68/0 32/68/0 32/68/0
Total 153/198/34 154/203/28 144/165/76 144/205/36

5.2.2 Heuristic Backtracking

Both versions of the solver which perform heuristic backtracking presented worse results than the ver-

sion on top of which they were implemented. These results may have been caused by the fact that in

both these versions the algorithm performs a heuristic backtracking step very often (check section 4.4).

Since our work with heuristic backtracking was mainly exploratory, these results are preliminary and

further study must be carried away.

5.2.3 Eliminating non-false Literals

As explained in section 4.3 the learning scheme implemented in version PB2 is a compromise between

general PB learning and clause learning. As such, version PB2 must be compared with version CL2.

Version PB2 surpasses version CL2 in 3 classes of instances. However, version CL2 exhibits better results

in 3 classes of instances and its overall results are also better than version PB2. This has probably to do

with the fact that the additional prunning power obtained by learning general PB constraints using the
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Table 5.7: The results of the main versions of the solver for the optimization benchmarks
Benchmark CL1 CARD1.2 PB1.2
aksoy 25/52/0/2 25/53/0/1 26/52/0/1
course-ass 0/5/0/0 1/4/0/0 2/3/0/0
domset 0/15/0/0 0/15/0/0 0/15/0/0
garden 1/2/0/0 1/2/0/0 1/2/0/0
haplotype 0/8/0/0 0/8/0/0 0/8/0/0
kexu 0/40/0/0 0/40/0/0 0/40/0/0
logic-synthesis 52/22/0/0 51/23/0/0 51/23/0/0
market-split 4/16/4/16 4/16/4/16 5/16/4/15
mps-v2-20-10 14/13/2/3 12/17/2/1 10/17/2/3
numerical 12/18/0/4 12/19/0/3 11/19/0/4
primes-dimacs-cnf 69/36/8/17 69/35/8/18 74/30/8/18
radar 6/6/0/0 6/6/0/0 6/6/0/0
reduced 17/62/72/122 33/55/99/86 14/63/70/126
routing 9/1/0/0 10/0/0/0 10/0/0/0
synthesis-ptl-cmos-circuits 6/2/0/0 6/2/0/0 6/2/0/0
testset 6/0/0/0 6/0/0/0 6/0/0/0
ttp 2/6/0/0 2/6/0/0 2/6/0/0
vtxcov 0/15/0/0 0/15/0/0 0/15/0/0
wnq 0/15/0/0 0/15/0/0 0/15/0/0
Total 223/334/86/164 238/331/113/125 224/332/84/167

learning scheme implemented in version PB2 does not compensate the additional computational effort

concerning the propagation procedure.

5.2.4 General PB learning versus Cardinality Constraint Learning

Version PB1.2 is the best version of the solver which performs general PB learning. This version obtained

worse results than version CL2, which implements a clause learning scheme. However, version PB1.2 is

dramatically better than version CL2 for some classes of instances, such as the Pigeon-Hole and FPGA

benchmarks. Moreover, version PB1.2 is better than version CL2 in the majority of classes of instances.

Version CL2 is only drastically better than PB1.2 in the TSP benchmarcks. Therefore, version CARD1.2

seems to be a reasonable compromise between these two versions since it performs as well as version

PB2 in the Pigeon-Hole and FPGA benchmarks and almost as well as CL2 in the TSP benchmarks.

5.2.5 An Initial Classification Step

As was expected the version that combines all the best learning schemes (COMB) obtained the best

results. However, since there are 27 instances that none of these versions can solve and the best version

(CARD1.2) is unable to solve 39 instances, version COMB could not improve the results much more.

Nevertheless, this version is able to solve more instances than version CARD1.2 and it even takes less

time to do so, which corroborates the quality of the classifier obtained using algorithm C4.5.

Our work concerning the application of machine learning algorithms for selecting the appropriate
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Table 5.8: The results of other solvers for the optimization benchmarks
Benchmark bsolo PBS4 minisat+ Pueblo
aksoy 25/53/0/1 11/63/0/5 25/45/0/9 15/64/0/0
course-ass 1/4/0/0 0/4/0/1 2/1/0/2 0/5/0/0
domset 0/15/0/0 0/15/0/0 0/15/0/0 0/15/0/0
garden 1/2/0/0 0/3/0/0 1/2/0/0 1/2/0/0
haplotype 0/8/0/0 0/8/0/0 8/0/0/0 0/8/0/0
kexu 0/40/0/0 0/40/0/0 11/29/0/0 0/40/0/0
logic-synthesis 51/23/0/0 19/55/0/0 31/41/0/2 32/42/0/0
market-split 4/16/4/16 0/20/0/20 0/20/0/20 4/16/4/16
mps-v2-20-10 12/17/2/1 7/21/1/3 10/15/1/6 10/18/1/3
numerical 12/19/0/3 12/11/0/11 10/9/0/15 14/17/0/3
primes-dimacs-cnf 69/35/8/18 69/36/8/17 79/26/8/17 75/30/8/17
radar 6/6/0/0 0/12/0/0 0/12/0/0 0/12/0/0
reduced 33/55/99/86 14/77/14/168 17/10/23/213 14/92/18/149
routing 10/0/0/0 4/6/0/0 10/0/0/0 10/0/0/0
synthesis-ptl-cmos-circuits 6/2/0/0 0/8/0/0 1/7/0/0 1/7/0/0
testset 6/0/0/0 4/2/0/0 5/1/0/0 6/0/0/0
ttp 2/6/0/0 2/6/0/0 2/6/0/0 2/6/0/0
vtxcov 0/15/0/0 0/15/0/0 0/15/0/0 0/15/0/0
wnq 0/15/0/0 0/15/0/0 0/15/0/0 0/15/0/0
Total 238/331/113/125 142/417/23/225 212/264/35/301 184/404/31/188

learning scheme is very preliminary. As future work, we intend to use other attributes in the generation

of the decision tree and try different machine learning algorithms.

5.2.6 Optimization Benchmarks

As happened with the non-optimization benchmarks, the cardinality constraint learning scheme was

also found the best learning scheme for the optimization benchmarks. However, the gap between the

cardinality constraint learning scheme and the original clause learning scheme is lower for the optimiza-

tion benchmarks than it is for the non-optimization benchmarks. Nevertheless, in the majority of the

benchmarks for which none of the different versions was able to provide the optimum solution, version

CARD1.2 reached the lowest value of the objective function.

It is important to stress that, in the PB’07 evaluation, bsolo was found the best solver on small integer

non-optimization benchmarks and, even so, we were able to improve those results.
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Chapter 6

Conclusions and Future Work

This thesis was focused on the contribution of SAT solvers to PB solvers, especially on the generaliza-

tion of conflict-based learning. Thus, besides the clause learning scheme, a broad range of learning

methods based on cutting planes were covered and compared with the original clause learning scheme

implemented in bsolo, a state of the art PB solver.

It is commonly known that, general PB constraints are more expressive than clauses and cardinal-

ity constraints. However, the additional pruning power obtained by learning general PB constraints

may not compensate the additional effort concerning the propagation procedure. Note that general PB

constraints are much harder to propagate than clauses, or even cardinality constraints.

It is not agreed among the research community which is the best learning scheme. In 2007’s PB

evaluation, Pueblo [29], a solver which performs a hybrid learning scheme, was found the best solver

on non-optimization benchmarks. There are, however, contradictory results. Chai and Kuehlmann [7]

implemented in their solver, galena, each one of the main learning schemes. The cardinality constraint

learning scheme obtained the best results. Nevertheless, in 2005’s PB evaluation galena output several

wrong answers. Moreover, galena uses a watch all literals strategy, thus making the propagation proce-

dure slower, which increases the cost of learning general PB constraints. Additionally, Parrain and Le

Berre [5] evaluated their solver, sat4jPseudo, with clause learning instead of PB learning and obtained

much better results.

Considering the disparity between the results concerning the application of learning techniques in

several state of the art PB solvers, the main goal of this work is to help clarifying which is the best

learning scheme.

Our results show that cardinality constraint learning is the most effective and robust learning scheme.

Moreover, it obtained much better results than the original clause learning scheme both on the small

integer non-optimization and optimization benchmarks from PB’07 evaluation. Cardinality constraints

are easier to propagate than general PB constraints and are also more expressive than clauses. Therefore,

this learning scheme seems a reasonable compromise between general PB learning and clause learning.
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As such, these results were not unexpected and confirm the results obtained by Chai and Kuehlmann [7]

using their PB solver, galena.

Since cardinality constraints and general PB constraints may generate many implications, the or-

der in which those implications are followed affects the conflict analysis procedure, since the learned

constraint depends on the structure of the implication graph. It was noted that when generating the

implication graph in a breadth-first search way the number of constraints that implied the conflict was

generally lower than it was when using a depth-first search approach. Experimental results supported

this observation. Nevertheless, there are other possible ways to generate the implication graph that

should be explored as future work. For instance, the literals to imply may be maintained in a priority

queue, using the activity of each literal as its priority in the queue.

Two new versions of the solver that implement heuristic backtracking were developed and compared

with the standard conflict directed backtracking approach. Since these versions obtained worse results

than the version on top which they were implemented, this work was not carried away. We plan to

resume our work concerning local search techniques, such as heuristic backtracking and restarts, in the

future, since they were found to be of the utmost importance for the performance of SAT solvers.

Finally, after processing the experimental results obtained for the best versions of the solver, the

C4.5 algorithm was used to generated a decision tree in order to classify any instance given as input

according to the learning scheme more appropriate to it. Using this decision tree, an ”instance-aware”

version of the solver was developed. This version presented better results than those corresponding to

the best learning scheme.

Different learning techniques show better results for different classes of instances. As such, using ma-

chine learning algorithms to identify the more appropriate learning technique for each instance seems a

vibrant are of research. Different instance parameters (attributes) must be tried in the generation of the

decision tree and different machine learning algorithms (such as neural networks and support vector

machines) must be used and compared.
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[14] N. Eén and N. Sörensson. Translating Pseudo-Boolean Constraints into SAT. Journal on Satisfia-

bility, Boolean Modeling and Computation, 2:1–25, 2006. Special Issue on SAT 2005 competition and

evaluations.

[15] E. Golberg and Y. Novikov. BERKMIN: a Fast and Robust SAT-Solver. In Proceedings of the Design,

Automation and Test in Europe Conference, pages 142–149, March 2002.

[16] Y. Gurevich. A SAT Solver Primer. In Bull. Euro. Ass. Theoret. Comput. Science 85, pages 112–133,

2005.

[17] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, and B. Selman. Dynamic Restart Policies. In Proceedings

of the National Conference on Artificial Intelligence, pages 674–681, 2002.

[18] I. Lynce and J. Marques-Silva. Complete unrestricted backtracking algorithms for satisfiability. In

Proceedings of the International Symposium on Theory and Applications of Satisfiability Testing, pages

214–221, May 2002.

[19] Y.S. Mahajan, Z. Fu, and S. Malik. Zchaff2004: An efficient SAT solver. In Proceedings of the Interna-

tional Symposium on Theory and Applications of Satisfiability Testing, pages 360–375, June 2004.

[20] V. Manquinho and O. Roussel. The First Evaluation of Pseudo-Boolean Solvers (PB’05). Journal on

Satisfiability, Boolean Modeling and Computation, 2:103–143, 2006. Special Issue on SAT 2005 compe-

tition and evaluations.

[21] J. P. Marques-Silva and I. Lynce. Towards Robust CNF Encodings of Cardinality Constraints. In-

ternational Conference on Principles and Practice of Constraint Programming, pages 483–497, September

2007.

[22] J. P. Marques-Silva and K. A. Sakallah. GRASP: A new search algorithm for satisfiability. In Pro-

ceedings of the International Conference on Computer Aided Design, pages 220–227, November 1996.

[23] M. Moskewicz, C. Madigan, Y. Zhao, and L. Zhang. Chaff: Engineering an Efficient SAT Solver. In

Proceedings of the Design Automation Conference, pages 530–535, June 2001.

[24] S. Prestwich and C. Quirke. Boolean and Pseudo-Boolean Models for Scheduling. Second Interna-

tional Workshop on Modelling and Reformulating Constraint Satisfaction Problems, 2003.

[25] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, California, 1993.

60



[26] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Journal of the Associ-

ation for Computing Machinery, 12(1):23–41, January 1965.

[27] S. Russel and P. Norvig. Artificial Intelligence - A Modern Approach. Prentice Hall series in Artificial

Intelligence. Englewood Cliffs, New Jersey, 1995.

[28] H. Sheini and K. Sakallah. Pueblo: A Modern Pseudo-Boolean SAT Solver. In Proceedings of the

Design and Test in Europe Conference, pages 684–685, March 2005.

[29] H. Sheini and K. Sakallah. Pueblo: A Hybrid Pseudo-Boolean SAT Solver. Journal on Satisfiability,

Boolean Modeling and Computation, 2:157–181, 2006. Special Issue on SAT 2005 competition and

evaluations.

[30] B. M. Smith, S. C. Brailsford, P. M. Hubbard, and H. P. Williams. The progressive party problem:

Integer linear programming and constraint programming compared. Principles and Practice of Con-

straint Programming - CP’95, 1:36–52, 1995.

[31] J. Walser. Solving Linear Pseudo-Boolean Constraint Problems with Local Search. In Proceedings of

the National Conference on Artificial Intelligence, pages 269–274, 1997.

[32] L. Zhang. On subsumption removal and on-the-fly CNF si. In Proceedings of the International Sym-

posium on Theory and Applications of Satisfiability Testing, 2005.

[33] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient Conflict Driven Learning in

Boolean Satisfiability Solver. In Proceedings of the International Conference on Computer Aided Design,

pages 279–285, 2001.

61


