
DOM: Specification and Client Reasoning

Azalea Raad, José Fragoso Santos and Philippa Gardner

Imperial College London

Abstract. We present an axiomatic specification of a key fragment of
DOM using structural separation logic. This specification allows us to
develop modular reasoning about client programs that call the DOM.

1 Introduction

The behaviour of JavaScript programs executed in the browser is complex. Such
programs manipulate a heap maintained by the browser and call a wide range of
APIs via specific objects in this heap. The most notable of these is the Document
Object Model (DOM) API and the DOM document object, which are used to
represent and manipulate the web page. JavaScript programs must run uniformly
across all browsers. As such, the English standards of JavaScript and DOM
are rather rigorous and are followed closely by browser vendors. While there
has been work on formal specifications of JavaScript [14], including mechanised
specifications [4], and some work on the formal specification of DOM [9,22] and
on the verification of JavaScript programs [7], we are not aware of any work on
the verification of JavaScript programs that call the DOM.

The W3C DOM standard [1] describes an XML update library used by all
browsers. This English standard is written in an axiomatic style that lends itself
well to formalisation. The first formal axiomatic DOM specification has been given
in [9,22], using context logic (CL) [6,5], which extends ideas from separation logic
(SL) [19] to complex data structures. However, this work has several shortcomings.
First, it is not simple to integrate SL reasoning about e.g. C [19], Java [16] and
JavaScript [7] with the DOM specifications in CL. The work in [9,22] explores
the verification of simple client programs manipulating a variable store and
calling the DOM. It does not verify clients manipulating a standard program
heap. Second, this specification does not always allow compositional client-side
reasoning. Finally, this specification makes simplifying choices (e.g. with live
collections), and does not always remain faithful to the standard.

We present a faithful axiomatic specification of a key fragment of the DOM
and verify substantial client programs, using structural separation logic (SSL)
introduced in [25,8]. SSL provides fine-grained reasoning about complex data
structures. The SSL assertion language contains the commutative separating
conjunction (∗), as in SL, that serves to split the DOM tree into smaller subtrees.
By contrast, the CL assertion language contains the non-commutative separating
application (•), that splits the DOM tree into a tree context with a hole applied
to a partial DOM tree. These two operators are not compatible with each other.

2

In particular, the integration of the CL DOM specification with an SL-based
program logic involves extending the program logic to include a frame rule for the
separating application. By contrast, the integration of our SSL DOM specification
with an SL-based program logic requires no extensions. We can reason about
DOM client programs written in e.g. C, Java and JavaScript, by simply using a
combination of the appropriate SL-based program logic for reasoning about the
particular programming language and our DOM axioms. We illustrate this by
verifying several realistic ad-blocker client programs written in JavaScript, using
the program logic of [7]. Our reasoning abstracts the complexities of JavaScript,
simply using standard SL assertions, an abstract variable store predicate, and
JavaScript heap assertions. It is thus straightforward to transfer our ideas to
other languages, as we show in §3.

As the authors noted in [9,22], CL does not always allow for local reasoning. As
we demonstrate in§2, it also does not provide compositional reasoning. In contrast,
SSL provides both local and compositional client reasoning. We demonstrate this
by presenting a simple client program which can be specified using a single SSL
triple whose precondition captures its intuitive footprint, compared to six CL
triples, whose preconditions are substantially larger than the footprint.

The DOM English standard [1] is written in an axiomatic style, allowing
for a straightforward comparison of our formal axiomatic specification with the
standard. A typical way to justify an axiomatic specification of a library is to
compare it against an operational semantics, as in [9,22,25] for DOM. However,
this approach seems unsuitable as it involves inventing an operational semantics
for the library, even though the standard is written in an axiomatic style. Instead,
we justify our specification with respect to a reference implementation that can
be independently tested. In [17] we present a JavaScript implementation of our
DOM fragment, and prove its correctness with respect to our specification.

Related work There has been much work on simple models of semi-structured
data, following the spirit of DOM, such as [6,2,3] (axiomatic, program logic)
and [20] (operational, information flow). We do not detail this work here. Instead,
we concentrate on axiomatic and operational models, with a primary focus on
DOM. Smith et al. developed an axiomatic specification of the DOM [9,22] in
CL [6,5], as discussed above. Others have also studied operational models of
DOM. Lerner et al. were the first to formalise the DOM event model [13]. This
model is executable and can be used as an oracle for testing browser compliance
with the standard. Unlike our work, this model was not designed for proving
functional properties of client programs, but rather meta-properties of the DOM
itself. The main focus of this work is the event dispatch model in DOM. Rajani et
al. [18] have developed an operational model for DOM events and live collections,
in order to study information flow. We aim to study DOM events in the future.

There has been much work on type analysis for client programs calling the
DOM. Thiemann [24] developed a type system for establishing safety properties
of DOM client programs written in Java. He extended the Java type system
of [10] with recursion and polymorphism, and used this extension to specify the
DOM data structures and operations. Later, Jensen et al. added DOM types

3

to JavaScript [12,21,11], developing a flow sensitive type analysis tool TAJS.
They used DOM types to reason about control and data flow in JavaScript
applications that interact with the DOM. Recently, Park et al. developed a
framework for statically analysing JavaScript web applications that interact with
the DOM [15]. As with TAJS, this framework uses configurable DOM abstraction
models. However, the proposed models are significantly more fine-grained than
those of TAJS in that they can precisely describe the structure of DOM trees
whereas TAJS simply treats them as black boxes. In [23], Swamy et al. translate
JavaScript to a typed language and type the DOM operations. The DOM types are
intentionally restrictive to simplify client analysis (e.g. modelling live collections
as iterators in [23]). In contrast, there has been little work on the verification
of programs calling the DOM. Smith et al. [9,22] look at simple client programs
which manipulate the variable store and the DOM. However, their reasoning is
not compositional, as previously discussed and formally justified in §2.

Outline In §2, we summarise our contributions. In §3, we present our DOM
specification and describe how our specification may be integrated with an
arbitrary SL-based program logic. In §4, we verify a JavaScript ad-blocker client
program which calls the DOM, and we finish with concluding remarks.

2 Overview

2.1 A Formal DOM Specification

The W3C DOM standard [1] is presented in an object-oriented (OO) and language-
independent fashion. It consists of a set of interfaces describing the fields and
methods exposed by each DOM datatype. A DOM object is a tree comprising a
collection of node objects. DOM defines twelve specialised node types. As our goal
is to present our specification methodology, we focus on an expressive fragment
of DOM Core Level 1 (CL1) that allows us to create, update, and traverse DOM
documents. We thus model the four most commonly used node types: document,
element, text and attribute nodes. Additionally, we model live collections of nodes
such as the NodeList interface in DOM CL1-4 (discussed in §3.5). Our fragment
underpins DOM Core Levels 1-4. As shown in [22], it is straightforward to extend
this fragment to the full DOM CL1 without adding to the complexity of the
underlying program logic. It will be necessary to extend the program logic as
we consider additional features in the higher levels of the standard (e.g. DOM
events). However, these features will not affect the fragment specified here. We
proceed with an account of our DOM fragment, hereafter simply called DOM.

DOM nodes Each node in DOM is associated with a type, a name, an optional
value, and information about its surroundings (e.g. its parent, siblings, etc.).
Given the OO spirit of the standard, each node object is uniquely identified by its
reference. To capture this more abstractly (and admit non-OO implementations),
we associate each node with a unique node identifier. As mentioned earlier, the
standard defines twelve different node types of which we model the following

4

#document 7

html 12

head 10

#text 5

Lorem

body 4

ad 9

img 3

width 17

#text 23

800px

src 13

#text 1

goo.gl/K4S0d0

img 8

article 6

#text 11

ipsum
img 2

D

(a)

#document 7

html 12

head 10

#text 5

Lorem

body 4

ad 9

x img 8

article 6

#text 11

ipsum
img 2

D x

img 3

y

src 13

#text 1

goo.gl/K4S0d0

y

width 17

#text 23

800px

(b)

Fig. 1: A complete DOM heap (a); same DOM heap after abstract allocation (b)

four. Document nodes represent entire DOM objects. Each DOM object contains
exactly one document node, named #document, with no value and at most a
single child, referred to as the document element. In Fig. 1a, the document node
is the node with identifier 7 (with document element 12). Text nodes (named
#text) represent the textual content of the document. They have no children and
may have arbitrary strings as their values. In Fig. 1a, node 5 is a text node with
string data “Lorem”. Element nodes structure the contents of a DOM object.
They have arbitrary names (not containing the ‘#’ character), no values and an
arbitrary number of text and element nodes as their children. In Fig. 1a, node
12 is an element node with name “html” and two children with identifiers 10 and
4. Attribute nodes store information about the element nodes to which they are
attached. The attributes of an element must have unique names. Attribute nodes
may have arbitrary names (not containing the ‘#’ character) and an arbitrary
number of text nodes as their children. The value of an attribute node is given
by concatenating the values of its children. In Fig. 1a, the element node with
identifier 3 has two attributes: one with name “width”, identifier 17, and value
“800px” (i.e. the value of text node 23); and another with name “src”, identifier
13, and value “goo.gl/K4S0d0” (i.e. the value of text node 1).

DOM operations The complete set of DOM operations and their axioms
are given in [17]. In §3, we present the axioms for the operations used in
the examples of this paper. Here, we describe the n.getAttribute(s) and
n.setAttribute(s,v) operations and their axioms to give an intuitive account
of SSL. The n.getAttribute(s) operation inspects the attributes of element
node n. It returns the value of the attribute named s if it exists, or the empty
string otherwise. For instance, given the DOM tree of Fig. 1a, when variable n

5

holds value 3 (the element node named “img”, placed as the left child of node
“ad”), and s holds “src”, then r = n.getAttribute(s) yields r=“goo.gl/K4S0d0”.

Intuitively, the footprint of n.getAttribute(s) is limited to the element
node n and its “src” attribute. To describe this footprint minimally, we need to
split the element node at n away from the larger surrounding DOM tree. To do
this, we introduce abstract DOM heaps that store abstract tree fragments. For
instance, Fig. 1a contains an abstract DOM heap with one cell at address D and a
complete abstract DOM tree as its value. It is abstract in that it hides the details
of how a DOM tree might be concretely represented in a machine. Abstract heaps
allow for their data to be split by imposing additional instrumentation using
abstract addresses. Such splitting is illustrated by the transition from Fig. 1a to
Fig. 1b. The heap in Fig. 1a contains a complete tree at address D. This tree can
be split using abstract allocation to obtain the heap in Fig. 1b with the subtree
at node 3 at a fresh, fictional abstract cell x, and an incomplete tree at D with a
context hole x indicating the position to which the subtree will return. Since we
are only interested in the attribute named “src”, we can use abstract allocation
again to split away the other unwanted attribute (“width”) and place it at a
fresh abstract cell y as illustrated in Fig. 1b. The subtree at node 3 and its “src”
attribute correspond to the intuitive footprint of n.getAttribute(s). Once the
getAttribute operation is complete, we can join the tree back together through
abstract deallocation, as in the transition from Fig. 1b to 1a.

Using SSL [25], we develop local specifications of DOM operations that only
touch the intuitive footprints of the operations. The assertion language comprises
DOM assertions that describe abstract DOM heaps. For example, the DOM
assertion α 7→ img3[β� src13[#text1[goo.gl/K4S0d0]],∅] describes the abstract
heap cell at x in Fig. 1b, where α and β denote logical variables corresponding to
abstract addresses x and y, respectively. It states that the heap cell at abstract
logical address α holds an “img” element with identifier 3, no children (∅)
and a set of attributes described by β � src13[#text1[goo.gl/K4S0d0]], which
contains a “src” attribute (with identifier 13 and value “goo.gl/K4S0d0”) and
other attributes to be found at abstract logical address β. The attributes of a
node are grouped by the commutative � operator. When we are only interested
in the value of an attribute, we can write an assertion that is agnostic to the
shape of the text content under the attribute. For instance, we can write α 7→
img3[β� src13[t],∅] ∗ val(t, goo.gl/K4S0d0) to state that attribute 13 contains
some text content described by logical variable t, and that the value of t (i.e. the
value of the attribute) is “goo.gl/K4S0d0”. Assertion val(t, goo.gl/K4S0d0) is
pure in that it contains no resources and merely describes the string value of t.

Using SSL triples, we can now locally specify r = n.getAttribute(s) as1:store(n : n, s : s, r : −)
∗α 7→ s′n[β � sm[t], γ]
∗ val(t, s′′)

 r = n.getAttribute(s)

store(n : n, s : s, r : s′′)
∗α 7→ s′n[β � sm[t], γ]
∗ val(t, s′′)

 (1)

1 It is possible to combine multiple cases into one by rewriting the pre- and postcondi-
tions as a disjunction of the cases and using logical variables to track each case. For
clarity, we opt to write each case separately.

6{
store(n : n, s : s, r : −)
∗ α 7→ s′n[a, γ] ∗ out(a, s)

}
r = n.getAttribute(s)

{
store(n : n, s : s, r : “ ”)
∗ α 7→ s′n[a, γ] ∗ out(a, s)

}
(2)

SSL triples have a fault-avoiding, partial-correctness interpretation as in other
separation logics: if an abstract DOM heap satisfies the precondition then either
the operation does not terminate, or the operation terminates and the resulting
state will satisfy the postcondition. Axiom (1) captures the case when n contains
an attribute named s; axiom (2) when n has no such attribute. The precondition
of (1) contains three assertions. Assertion store(n :n,s :s,r :−) describes a variable
store where program variables n, s and r have logical values n, s and an arbitrary
value (−), respectively.2 Assertion α 7→ s′n[β � sm[t], γ] describes an abstract
DOM heap cell at the logical abstract address α containing the subtree described
by assertion s′n[β � sm[t], γ]. This assertion describes a subtree with a single
element node with identifier n and name s′. Its children have been framed off,
leaving behind the context hole γ (using abstract allocation as in the transition
from Fig. 1a to 1b, then framing off the cell at γ). It has an attribute named
s with identifier m and text content t, plus (potentially) other attributes that
have been framed off, leaving behind the context hole β. This framing off of the
children and attributes other than s captures the intuition that the footprint
of n.getAttribute(s) is limited to element n and attribute s. Lastly, assertion
val(t, s′′) states that the value of text content t is s′′. The postcondition of (1)
declares that the subtree remains the same and that the value of r in the variable
store is updated to s′′, i.e. the value of the attribute named s.

The precondition of (2) contains the assertion α 7→ s′n[a, γ] where, this time,
the attributes of the element node identified by n are described by the logical
variable a. With the precondition of (1), all other attributes can be framed off
leaving context hole β. With the precondition of (2) however, the attributes are
part of the intuitive footprint since we must check the absence of an attribute
named s. This is captured by the out(a, s) assertion. The postcondition of (2)
declares that the subtree remains the same and the value of r in the variable store
is updated to the empty string “ ”, as mandated by the English specification.

The n.setAttribute(s,v) operation inspects the attributes of element node
n. It then sets the value of the attribute named s to v if such an attribute exists
(3). Otherwise, it creates a new attribute named s with value v and attaches it
to node n (4). We can specify this English description as1:store(n : n, s : s, v : s′′)
∗α 7→ s′n[β � sm[t], γ]
∗ δ 7→ ∅g

 n.setAttribute(s,v)

∃r. store(n : n, s : s, v : s′′)
∗α 7→ s′n[β�sm[#textr[s′′]], γ]
∗ δ 7→ t

 (3)

{
store(n : n, s : s, v : s′′)
∗α 7→ s′n[a, γ] ∗ out(a, s)

}
n.setAttribute(s,v)

{
∃m,r.store(n : n, s : s, v : s′′)
∗α 7→ s′n[a�sm[#textr[s′′]], γ]

}
(4)

Recall that attribute nodes may have an arbitrary number of text nodes as their
children where the concatenated values of the text nodes denotes the value of the

2 Since DOM may be called by different client programs written in different languages,
store denotes a black-box predicate that can be instantiated to describe a variable
store in the client language. Here, we instantiate it as the JavaScript variable store.

7

attribute. As such, when n contains an attribute named s, its value is set to v by
removing the existing children (text nodes) of s, creating a new text node with
value v and attaching it to s (axiom 3). What is then to happen to the removed
children of s? In DOM, nodes are not disposed of: whenever a node is removed, it
is no longer a part of the DOM tree but still exists in memory. To model this, we
associate the document object with a grove designating a space for the removed
nodes. The δ 7→ ∅g assertion in the precondition of (3) simply reserves an empty
spot (∅g) in the grove. In the postcondition the removed children of s (i.e. t)
are moved to the grove. Similarly, when n does not contain an attribute named
s, a new attribute named s is created and attached to n. The value of s is set to
v by creating a new text node with value v and attaching it to s (axiom 4).

Comparison with existing work [9,22] In contrast to the commutative
separating conjunction ∗ in SSL, context logic (CL) and multi-holed context logic
(MCL) use a non-commutative separating application • to split the DOM tree
structure. For instance, the C •α P formula describes a tree that can be split into
a context tree C with hole α and a subtree P to be applied to the context hole.
The application is not commutative; it does not make sense to apply a context to
a tree. In [9,22], the authors noted that the appendChild axiom was not local, as
it required more than the intuitive footprint of the operation. What they did not
observe was that CL client reasoning is not compositional. Consider a program C
that copies the value of the “src” attribute in element p to that of q:

C , s = p.getAttribute("src"); q.setAttribute("src",s)

Let us assume that p contains a “src” attribute while q does not. Using SSL,
we can specify C as follows, where S, store(p:p,q:q,s:−) ∗ val(t, s1) ∗ out(a, s),
P ,sp[γ1 � srcn[t], f1], Q,s′q[a, f2] and Q′,s′q[a� sm[#textr[s1]], f2]:{

S ∗ α 7→ P ∗ β 7→ Q
}
C
{
∃m,r. S ∗ α 7→ P ∗ β 7→ Q′} (5)

Observe that the p and q elements may be in one of three orientations with
respect to one another: i) p and q are not related and describe disjoint subtrees;
ii)q is an ancestor of p; and iii) p is an ancestor of q. All three orientations are
captured by (5). In contrast, using MCL (adapted to our notation) C is specified
as follows where i-iii correspond to the three orientations above.

i)
{
S ∗

(
(C•αP)•βQ

)}
C
{
∃m,r. S ∗

(
(C•αP)•βQ′)}

ii)
{
S ∗

(
Q•αP

)}
C
{
∃m,r. S ∗

(
Q′•αP

)}
iii)
{
S ∗

(
P•αQ

)}
C
{
∃m,r. S ∗

(
P•αQ′)}

When p and q are not related, the precondition of (i) states that the DOM tree
can be split into a subtree with top node q, and a tree context with hole variable
β satisfying the C •α P formula. This context itself can be split into a subcontext
with top node p and a context C with hole α. The postcondition of (i) states that
q is extended with a “src” attribute, and the context C •α P remains unchanged.
This specification is not local in that it is larger than the intuitive footprint of C.
The only parts of the tree required by C are the two elements p and q. However,
the precondition in (i) also requires the surrounding linking context C: to assert

8

that p and q are not related (p is not an ancestor of q and vice versa), we must
appeal to a linking context C that is an ancestor of both p and q. This results
in a significant overapproximation of the footprint. As either C or P , but not
both, may contain context hole β, (i) includes the behaviour of (iii), which can
thus be omitted. We have included it as it is more local.

More significantly however, due to the non-commutativity of • we need to
specify (ii) and (iii) separately. Therefore, the number of CL axioms of a client
program may grow rapidly as its footprint grows. Consider the program C′ below:

C′ , s = p.getAttribute("src"); s’ = r.getAttribute("src");

q.setAttribute("src", s+s’)

with its larger footprint given by the distinct p, q, r. When p and q contain a
“src” attribute and r does not, we can specify C′ in SSL with one axiom similar to
(5). By contrast, when specifying C′ in MCL, not only is locality compromised in
cases analogous to (i) above, but we need eight separate specifications. Forgoing
locality, as described above, we still require six specifications. This example
demonstrates that CL reasoning is not compositional for client programs.

2.2 Verifying JavaScript Programs that Call the DOM

We demonstrate how to use our DOM specification to reason about client programs
that call the DOM. Our DOM specification is agnostic to the choice of client
programming language. In contrast to previous work [9,22], our DOM specification
integrates simply with any SL-based program logic such as those for Java [16]
and JavaScript [7]. Here, we choose to reason about JavaScript client programs.

We study a JavaScript image sanitiser that sanitises the “src” attribute of an
element node by replacing its value with a trusted URL if the value is blacklisted.
To determine whether or not a value is blacklisted, a remote database is queried.
The results of successful lookups are stored in a local cache to minimise the
number of queries. In §4, we use this sanitiser to implement an ad blocker that
filters untrusted contents of a web page. The code of this sanitiser, sanitiseImg,
is given in Fig. 2. It inspects the img element node for its “src” attribute (line 2).
When such an attribute exists (line 3), it consults the local cache (cache) to
check whether its value (url) is blacklisted (line 4). If so, it changes its value to
the trusted cat value. If the cache lookup is unsuccessful (line 6), the database
is queried by the isBlackListed call (line 7). If the value is deemed blacklisted
(line 8), the value of “src” is set to the trusted cat value (line 9), and the local
cache is updated to store the lookup result (line 10). Observe that sanitiseImg
does not use JavaScript-specific constructs (e.g. eval) and simply appeals to the
standard language constructs of a while language. As such, it is straightforward
to transform this proof to verify sanitiseImg written in e.g. C and Java.

The behaviour of sanitiseImg is specified in Fig. 2. The specifications in
(6)-(9) capture different cases of the code as follows: in (6) img has no “src”
attribute (i.e. the conditional of line 3 fails); in (7) the value of “src” is blacklisted
in the local cache (line 5); in (8) the value is blacklisted and the cache has no

9

st , store(img:n,cat:s2,cache:c,url:−,isB:−) Pout , α 7→sn[a,γ]∗out(a,“src”)

P , α 7→sn[β � srcm[t],γ] ∗ val(t, s1) ∗ δ 7→∅g Q , ∃r.α 7→sn[β � srcm[#textr[s2]], γ] ∗ δ 7→t{
st ∗ Pout

}
sanitiseImg(img,cat)

{
st ∗ Pout

}
(6){

st ∗ P ∗ (c, s1) 7→1 ∗ isB(s1)
}

sanitiseImg(img,cat)
{

st ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)
}

(7){
st ∗ P ∗ (c, s1) 7→0 ∗ isB(s1)

}
sanitiseImg(img,cat)

{
st ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)

}
(8){

st ∗P ∗(c, s1) 7→0 ∗ ¬isB(s1)
}

sanitiseImg(img,cat)
{

st ∗P ∗(c, s1) 7→0 ∗ ¬isB(s1)
}

(9)

{
store(url:s1, isB:−) ∗ isB(s1)

}
isB=isBlackListed(url)

{
store(url:s1, isB:1) ∗ isB(s1)

}{
store(url:s1, isB:−) ∗ ¬isB(s1)

}
isB=isBlackListed(url)

{
store(url:s1, isB:0) ∗ ¬isB(s1)

}
{

store(img :n, cat :s2, cache :c, url :−, isB :−) ∗ P ∗ (c, s1) 7→0 ∗ isB(s1)
}

1. sanitiseImg(img,cat) , {
2. url = img.getAttribute("src");{

store(img:n, cat:s2, cache :c, url:s1 , isB:−) ∗ P ∗ (c, s1) 7→0 ∗ isB(s1)
}

3. if (url){ // img has an attribute named “src”
4. isB = cache.url;{

store(img :n,cat :s2,cache :c, url :s1,isB :0)∗P ∗ (c, s1) 7→0 ∗ isB(s1)
}

5. if (isB){ img.setAttribute("src",cat) } // url is in cache (thus blacklisted)
6. else { // url is not in cache{

store(img :n, cat :s2, cache :c, url :s1, isB :0)∗P ∗(c, s1) 7→0 ∗ isB(s1)
}

7. isB = isBlackListed(url);{
store(img :n, cat :s2, cache :c, url :s1, isB :1) ∗ P ∗(c, s1) 7→0 ∗ isB(s1)

}
8. if (isB){ // url is blacklisted{

store(img :n, cat :s2, cache :c, url :s1, isB :1) ∗ P ∗(c, s1) 7→0 ∗ isB(s1)
}

9. img.setAttribute("src",cat);{
store(img :n, cat :s2, cache :c, url :s1, isB :1) ∗Q ∗ (c, s1) 7→0 ∗ isB(s1)

}
10. cache.url = 1{

store(img :n,cat :s2, cache :c, url :s1, isB :1) ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)
}

11. } } } }
{

store(img :n, cat :s2, cache :c, url :−, isB :−) ∗Q ∗ (c, s1) 7→1 ∗ isB(s1)
}

Fig. 2: The specifications of sanitiseImg (above); a proof sketch of (8) (below)

record of it (lines 9-10); and in (9) the value is not blacklisted and the cache has
no record of it (i.e. the conditional of 8 fails). We focus on (8) here; the remaining
ones are analogous. The precondition of (8) consists of four assertions: the st
captures the values of program variables; the P describes an element with an
attribute named “src” and value s1; the (c, s1) 7→0 asserts that the s1 field of
cache c holds value 0 (i.e. value s1 may or may not be blacklisted but the cache
has no record of it); and isB(s1) states that s1 is blacklisted. This last assertion is
used in the isBlackListed call of line 7 with its behaviour as specified in Fig. 2.
A proof sketch of specification (8) is given in Fig. 2. At each proof point, we have
highlighted the effect of the preceding command, where applicable.

3 A Formal DOM Specification

We give our formal axiomatic specification of DOM, comprising the DOM model
in §3.1 eliding some details about DOM live collections until §3.5, the DOM

10

assertions in §3.2, the framework for reasoning about DOM client programs in
§3.3, the DOM axioms in §3.4, and DOM live collections in §3.5.

3.1 DOM Model

We model DOM heaps (e.g. Fig. 1) as mappings from addresses to DOM data.
To this end, we assume a countably infinite set of identifiers, n∈Id, a designated
document identifier associated with the document object, d∈ Id, a countably
infinite set of abstract addresses, x∈AAdd, and a designated document address
D, where the sets Id, AAdd and {D} are pairwise disjoint.

DOM data DOM nodes are the building blocks of DOM data. Formally, we
write: i) #textn[s]fs for the text node with identifier n and text data s; ii) sn[a, f]tsfs
for the element node with identifier n, tag name s, attribute set a, and children
f ; iii) sn[tf]ts for the attribute node with identifier n, name s, and children tf ;
and iv) #docd[e]tsfs & g for the document object with the designated identifier d,
document element e (or ∅e for no document element) and grove g, ignoring the
fs and ts for now. DOM nodes can be grouped into attribute sets, forests, groves,
and text forests, respectively ranged over by a, f , g and tf . An attribute set
represents the attribute nodes associated with an element node and is modelled
as an unordered, possibly empty collection of attribute nodes. A forest represents
the children of an element node, modelled as an ordered, possibly empty collection
of element and text nodes. A grove is where the orphaned nodes are stored. In
DOM, nodes are never disposed of and whenever a node is removed from the
document, it is moved to the grove. The grove is also where newly created nodes
are placed. The document object is thus associated with a grove, modelled as
an unordered, possibly empty collection of text, element and attribute nodes. A
text forest represents the children of an attribute node, modelled as an ordered,
possibly empty collection of text nodes. We associate each node with a set of
forest listeners, fs; we further associate element and document nodes with a set
of tag listeners, ts . We delay the motivation for these listeners until §3.5 when we
model live collections. DOM data may be either incomplete with context holes
(e.g. x), or complete with no context holes. Notationally, data written in bold
may contain context holes; regular font indicates the absence of context holes.

Definition 1. The sets of strings s∈S, texts t∈T, elements e∈E, documents
doc∈D, attribute sets a∈A, forests f ∈F, groves g∈G, and text forests tf ∈TF,
are defined below where x∈AAdd, n∈Id, fs∈P (Id) and ts∈P (S×Id):

s ::=∅s |c |s1.s2 t ::=#textn[s]fs e ::=sn[a, f]tsfs a ::=∅a |x |sn[tf]fs |a1 � a2

doc ::= #docd[∅e]tsfs & g | #docd[e]tsfs & g | #docd[x]tsfs & g

f ::=∅f |x | t |e | f1⊗f2 g ::=∅g |x | t |e |sn[tf]fs |g1⊕g2 tf ::=∅tf |x | t |tf1�tf2

where the operations ., �, ⊗, � and ⊕ are associative with identities ∅s, ∅tf ,
∅f , ∅a and ∅g, respectively; the � and ⊕ operations are commutative; and all
data are equal up to the properties of ., �, ⊗, � and ⊕. Data does not contain

11

repeated identifiers and abstract addresses; element nodes contain attributes with
distinct names. The set of DOM data is d∈Data,E ∪ F ∪ TF ∪ A ∪G ∪ D.

When the type of data is clear from the context, we drop the subscripts for
empty data and write e.g. ∅ for ∅f . We drop the forest and tag listeners when
not relevant to the discussion and write e.g. sn[a, f] for sn[a, f]tsfs . Given the
set of DOM data Data, there is an associated address function, Adds(.), which
returns the set of context holes present in the data. Context application d1 ◦x d2

denotes the standard substitution of d2 for x in d1 (d1[d2/x]) provided that
x ∈ Adds(d1) and the result is well-typed, and is otherwise undefined.

DOM heaps A DOM heap is a mapping from addresses, x∈Addr,AAdd]
{D}, to DOM data. DOM heaps are subject to structural invariants to ensure
that they are well-formed. In particular, a context hole x must not be reachable
from the abstract address x in the domain of the heap. For instance, {x 7→
sn[∅,y],y 7→ s′m[∅,x]} is not a DOM heap due to the cycle. We capture this by
the reachability relation defined as: x y ⇐⇒ y ∈ Adds(h(x)), for heap h
and address x ∈ Addr. We write + to denote the transitive closure of .

Definition 2. The set of DOM heaps is: h∈DOMHeap⊆({D}⇀D) ∪ (AAdd
fin
⇀ Data) provided that for all h ∈ DOMHeap and x ∈ Addr the following hold:

1. identifiers and context holes are unique across h;
2. ¬∃x. x + x;
3. context holes in h are associated with data of correct type:

∀x,y. y ∈ Adds(h(x)) ∧ y ∈ dom(h)⇒ ∃d. h(x) ◦y h(y)=d

DOM Heap composition, • : DOMHeap×DOMHeap ⇀ DOMHeap, is the stan-
dard disjoint function union provided that the resulting heap meets the constraints
above. The empty DOM heap, 0, is a function with an empty domain.

Definition 3. The abstract (de)allocation relation, ≈: DOMHeap×DOMHeap,
is defined as follows where ∗ denotes the reflexive transitive closure of the set.

≈,
{

(h1,h2), (h2,h1) ∃x,d1,d2,x. h1(x)=(d1◦xd2) ∧ h2=h1[x 7→d1]•[x 7→d2]
}∗

During abstract allocation (from h1 to h2), part of the data d2 at address
x is split and promoted to a fresh abstract address x in the heap leaving the
context hole x behind in its place. Dually, during abstract deallocation (from h2

to h1) the context hole x in DOM data d1 is replaced by its associated data d2

at abstract address x, removing x from the domain of the heap in doing so.

3.2 DOM Assertions

DOM assertions comprise heap assertions describing DOM heaps such as those in
Fig. 1. DOM heap assertions are defined via DOM data assertions describing the
underlying DOM structure such as nodes, forests and so forth. As we show later,
pure assertions such as out(a, s) in §2 are derived assertions defined in Fig. 4.

12

Definition 4. The DOM assertions, ψ∈DOMAsst, and DOM data assertions,
φ∈DOMDAsst, are defined as follows where α,a,n, · · · denote logical variables.

ψ ::=D 7→ φ | α 7→ φ DOM heap assertions

φ ::=false | φ1⇒φ2 | ∃x. φ | v | α | φ1 ◦α φ2 | ♦α classical|context hole

|#textn[φ]f |sn[φ1,φ2]ef |sn[φ]f |#docn[φ1]ef &φ2|∅e nodes|empty doc. element

| ∅s | φ1.φ2|∅a | φ1 � φ2|∅f | φ1 ⊗ φ2 strings|attr. sets|forests

| ∅g | φ1 ⊕ φ2|∅tf | φ1 � φ2 groves|text forests

The D 7→φ assertion describes a single-cell DOM heap at document address
D; similarly, the α 7→φ describes a single-cell DOM heap at the abstract address
denoted by α. For data assertions, classical assertions are standard. The v is
a logical variable describing DOM data. The α is a logical variable denoting a
context hole; the φ1 ◦αφ2 describes data that is the result of replacing the context
hole α in φ1 with φ2; ♦α describes data that contains the context hole α. The
node assertions respectively describe element, text, attribute and document nodes
with their data captured by the corresponding sub-assertions. The ∅e, ∅s, ∅a,
∅f , ∅g and ∅tf describe an empty document element, string, attribute set, forest,
grove and text forest, respectively. Similarly, φ1.φ2, φ1 � φ2, φ1 ⊗ φ2, φ1 ⊕ φ2
and φ1 � φ2 respectively describe a string, attribute set, forest, grove and text
forest that can be split into two, each satisfying the corresponding sub-assertion.

3.3 PLDOMLogic

We show how to reason about client programs that call the DOM. Our DOM
specification is agnostic to the client programming language and we can reason
about programs in any language with an SL-based program logic. To this end,
given an arbitrary programming language, PL, with an SL-based program logic,
PLLogic, we show how to extend PLLogic to PLDOMLogic, in order to enable
DOM reasoning. Later in §4, we present a particular instance of PLDOMLogic

for JavaScript, and use it to reason about JavaScript clients that call the DOM.

States We assume the underlying program states of PLLogic to be modelled
as elements of a PCM (partial commutative monoid) (PLStates, ◦, 0PL), where
◦ denotes state composition, and 0PL denotes the unit set. To reason about
the DOM operations, in PLDOMLogic we extend the states of PLLogic to
incorporate DOM heaps; that is, we define a program state to be a pair, (h,h),
comprising a PL state h ∈ PLStates, and a DOM heap h ∈ DOMHeaps.

Definition 5. Given the PCM of PL, the set of PLDOMLogic program states
is Σ∈State,PLStates×DOMHeap. State composition, +:State×State⇀
State, is defined component-wise as +,(◦, •) and is not defined if composition
on either component is undefined. The unit set is I , {(h,0) | h ∈ 0PL}.

Assertions We assume the PLLogic assertions to include: i) standard classical
assertions; ii) standard boolean assertions; iii) standard SL assertions; and iv) an
assertion to describe the PL variable store as seen in §2 of the form store(. . .). In
PLDOMLogic we extend the PLLogic assertions with those of DOM (Def. 4),
semantic implication V, and the semantic magic wand ∼∗, described shortly.

13

Definition 6. The set of PLDOMLogic assertions, P ∈ Asst, is defined as
follows in the binding order ∗,⇒,V,−∗,∼∗, with 	∈{∈,=,<,≤,⊂,⊆}:

P,Q ::= false | P ⇒ Q | ∃x. P|E1	E2 Classical|Boolean assertions
| emp |P ∗Q |P −∗Q SL assertions
| store(x,i : vi)|Λ variable store|PLLogic-specific assertions
| ψ|P V Q |P ∼∗Q DOM|Structural assertions

Assertions are interpreted as sets of program states (Def. 5). Classical and
boolean assertions are standard. The emp assertion describes an empty program
state in the unit set I; the P ∗ Q describes a state that can be split into
two substates satisfying P and Q. The −∗ connective is the right adjunct of ∗,
i.e. P ∗ (P−∗Q)⇒Q. Informally, a state that satisfies P−∗Q is one that is missing
P , and when combined with P , it satisfies Q. The store(x,i :vi) describes a variable
store in PL where variables xi have values vi, respectively. The Λ describes states
of the form (h,0) where h satisfies Λ. Dually, the ψ describes states of the form
(h,h) where h ∈ 0PL and h satisfies ψ. The P V Q assertion denotes semantic
implication and integrates logical implication (⇒) with abstract (de)allocation
on DOM heaps (Def. 3). The ∼∗ connective is the semantic right adjunct of ∗:
P ∗ (P ∼∗Q)V Q. It is similar to −∗ and incorporates the ≈ relation on DOM
heaps. Intuitively, a state that satisfies P ∼∗Q is one that is missing P , such
that when combined with P and undergone a number of (possibly zero) abstract
(de)allocations, it satisfies Q. We write E1	̇E2 for E1	E2∧emp.

Programming language, proof rules and soundness We extend the pro-
gramming language of PL with the operations of our DOM fragment (e.g. getAt-
tribute in §2.1). The proof rules of PLDOMLogic are those of PLLogic with
the exception of the rule of consequence: we generalise the premise to allow
semantic implication (V) between assertions rather than logical implication (⇒).
We further extend the proof rules with the axioms of DOM operations, DOMAx,
defined shortly in §3.4 below. The modified rule of consequence and the rule for
DOM axioms are given below. We prove PLDOMLogic sound in [17].

P V P ′ {P ′} C {Q′} Q′ V Q

{P} C {Q}
(Con)

(P, C, Q) ∈ DOMAx

{P} C {Q}
(Ax)

3.4 DOM Operations and Axioms

We formally axiomatise the behaviour of a DOM operations associated with our
fragment. In Fig. 3 we give a select number of axioms including those of the
operations used in the examples of this paper. The behaviour of some of the
operations is captured by several axioms; we have omitted analogous cases. A full
list of DOM operations modelled and their axioms, DOMAx, are given in [17].

The assertions in the pre- and postconditions of axioms are of the form
store(· · ·) ∗ ψ where the store predicate states the value associated with each
program variable, and ψ is a DOM assertion that describes the operation footprint.
Since the DOM library may be called by different client programs written in

14

store(n :n, o :o, r :−)
∗α 7→sn[β, γ]e1f1
∗ δ 7→s′o[ζ,t ∧ isComplete]e2f2

 r = n.appendChild(o)

store(n :n, o :o, r :o)
∗α 7→sn[β,γ ⊗ s′o[ζ,t]e2f2]e1f1
∗ δ 7→ (∅f ∨∅g)

store(n : n, s : s, r : −)
∗α 7→ #docn[β]ef & γ
∗ safeName(s)

 r = n.createElement(s)

{
∃r, f′, e′. store(n :n, s :s, r :r)

∗α 7→#docn[β]ef &γ⊕sr[∅a,∅f]e
′

f′

}
{

store(n :n, o :o, r :−)
∗α 7→#textn[s.s′]f ∗ o=̇ |s|

}
r = n.splitText(o)

{
∃r,f′.store(n:n,o:o,r:r)
∗α 7→#textn[s]f⊗#textr[s′]f′

}
{

store(n:n, r:−)
∗α 7→ sn[β,t]ef1 ∗ TIDs(t, l)

}
r = n.childNodes

{
∃f,f2. store(n:n, r:f)

∗α 7→sn[β,t]ef2 ∗f1⊆̇f2∗f∈̇f2

}
{

store(n:n, s:s, r:−)
∗α 7→s′n[β,t]ef∗search(t,s,l)

}
r= n.getElementsByTagName(s)

{
∃r, e′. store(n :n, s :s, r :r)

∗α 7→s′n[β,t]e
′

f ∗e⊆̇e′∗(s,r)∈̇e′

}
{

store(f:f, r:−)∗α 7→sn[β,t]ef′
∗TIDs(t,l) ∗ f∈̇f′

}
r = f.length

{
∃r. store(f :f, r :r)
∗α 7→ sn[β,t]ef′ ∗ r=̇ |l|

}

store(f :f, i : i, r :−)
∗α 7→ s′n[β,t]ef′ ∗ (s, f)∈̇e
∗ search(t, s, l) ∗ 0≤̇i<̇ |l|

 r = f.item(i)

∃r. store(f :f, i : i, r :r)
∗α 7→ s′n[β,t]ef′
∗r=̇ |l|i

Fig. 3: DOM Core Level 1 axioms (excerpt)

different programming languages, store denotes a black-box predicate that can
be instantiated to describe a variable store in the client programming language.
In §4 we reason about JavaScript client programs that call the DOM and thus
instantiate store to describe the JavaScript variable store emulated in the heap.

We now describe of the DOM operations in Fig. 3 and their axioms, delaying
the description of the last four operations until §3.5.

n.appendChild(o): when n and o both identify nodes, this operation appends
o to the end of n’s child list and returns o. It fails if o is an ancestor of n (otherwise
it would introduce a cycle and break the DOM structure); or if n is a text node
or a document node with a non-empty document element; or if o is an attribute
or a document node. Fig. 3 shows the axiom for when o is an element node (o).
To ensure that o is not an ancestor of n, we require the entire subtree at o to be
separate from the subtree at n. This is achieved by the isComplete assertion and
the separating conjunction ∗. The isComplete is a derived assertion defined in
Fig. 4. It describes DOM data with no context holes. The postcondition leaves
∅f∨∅g in place of o once moved since we do not know if o has come from a forest
or grove position. The disjunction leaves the choice to the frame.

n.createElement(s): when n identifies a document node, it creates a new
element named s, and returns its identifier. The new element has no attributes or
children and resides in the grove. The grove in the precondition is thus extended
with the new node in the postcondition. The safeName(s) assertion is defined in
Fig. 4 ensures that the tag name does not contain the invalid character ‘#’.

n.splitText(o): when n identifies a text node and o denotes an integer, it
breaks the data of n into two text nodes at offset o (indexed from 0), keeping
both nodes in the tree as siblings. It fails when o is an invalid offset (i.e. negative
or greater than the length). The return value is the identifier of the new node.

15

isComplete, ¬∃α. ♦α safeName(s) , ¬∃s1, s2. s=̇s1.‘#’.s2
val(t, s) , (t=̇∅tf ∗ s=̇“ ”)∨(∃n, s1, s2,t′.t=̇#textn[s1]−�t′∗ val(t′, s2) ∗ s=̇s1.s2
out(a, s), (a=̇∅a) ∨ (∃s′,n,t,a′. a=̇s′n[t]− � a′ ∗ s ˙6=s′ ∗ out(a′, s))

TIDs(t, l), (l=̇[] ∗ t=̇∅f)∨
(
∃n, s,a, f,t′, l′. l=̇n:l′

∗(t=̇#textn[s]−⊗t′ ∨ t=̇sn[a,f]−−⊗t′)∗TIDs(t′,l′)
)

search(t,s,l), (t=̇∅f ∗ l=̇[]) ∨ (∃n, s′,t′. t=̇#textn[s′]− ⊗ t′ ∗ search(t′, s, l))
∨
(
∃s′,n,t1,t2,l1,l2.t=̇s′n[−,t1]−− ⊗t2 ∗ search(t1,s,l1)∗search(t2,s,l2)

∗ (s=̇s′ ∨ s=̇“ * ”⇒ l=̇n:(l1++l2)) ∗ (s ˙6=s′ ∧ s ˙6=“ * ”⇒ l=̇l1++l2)
)

Fig. 4: Derived DOM assertions

Our specifications have smaller footprints than those of [9,22]. In particular,
the axiom of appendChild requires a substantial overapproximation of the foot-
print due to the reasons discussed in §2.1, namely the need for a linking context
(see page 7). This axiom is given below using MCL [5] (adapted to our notation):{

(C•α sn[a, γ])•β s′o[a′,t]
}
n.appendChild(o)

{
(C•α sn[a, γ ⊗ s′o[a′,t]])•β ∅f

}
This axiom is not small enough: the only parts required by appendChild are
the tree at o being moved, and the element n whose children are extended by o.
However, as before the precondition above also requires the linking context C.

3.5 Live Collections

The DOM API provides several interfaces for traversing DOM trees based on live
collections of nodes, such as the NodeList interface in DOM CL1-4. DOM CL 4 also
introduces the HTMLCollection interface for live collections of element nodes. We
describe our model of live collections in terms of NodeLists. However, our model
is abstract and captures the behaviour of both NodeLists and HTMLCollections.

The NodeList interface is an ordered collection of nodes. NodeLists are live in
that they dynamically reflect document changes. Several DOM operations return
NodeLists. For example, n.getElementsByTagName(s) returns a NodeList (using
depth-first, left-to-right search) containing the identifiers of the elements named
s underneath the tree rooted at n. Given the DOM tree of Fig. 1a, when n=4
and s=“img”, then r = n.getElementsByTagName(s) yields r=[3, 8, 2]. However,
since NodeLists are live, if node 8 is later removed from the document, then
r=[3, 2]. When s=“ * ” denoting a wildcard, then the resulting NodeList must con-
tain the identifiers of all element nodes underneath n. For instance, with the DOM
tree of Fig. 1a, when n=4 and s=“ * ”, then r = n.getElementsByTagName(s)

yields r=[9, 3, 8, 6, 2]. This operation may be called on both document and ele-
ment nodes. We thus associate each such node with a set of tag listeners, ts . Each
listener is of the form (s,fid) where s denotes the search string (e.g. “img” in
the example above) and fid ∈ Id denotes the identifier of the resulting NodeList.

The n.childNodes operation also returns a NodeList, containing the identi-
fiers of the immediate children of n. For instance, with the DOM tree of Fig. 1a,

16

when n=4, then r = n.childNodes returns r=[9, 6]. Again, the value of r is live
and dynamically reflects the changes to the child forest of n. The n.childNodes

operation may be called on any DOM node. We therefore associate each DOM
node with a set of forest listeners, fs. Each forest listener, fid ∈ Id, denotes
the identifier of a NodeList. Our specification is the first that faithfully models
the behaviour of NodeLists. In particular, both [9] and [22] associate a single
forest listener with DOM nodes and consequently admit behaviours that are not
guaranteed by the standard. We proceed with the NodeList axioms in Fig. 3.

n.childNodes: when n=n, this operation returns (the identifier of) a forest
listener NodeList f associated with n. Fig. 3 shows the axiom for when n is an
element. When asked for a forest listener NodeList, a node may either return an
existing one, or generate a fresh one and extend its set with it. This flexibility
is due to an under-specification in the standard. Thus, in the postcondition the
original set f1 is extended to f2 (f1⊆̇f2) with return value f∈f2. The TIDs(t,l)
assertion is defined in Fig. 4 and states that list l contains the top-level node iden-
tifiers (from left to right) of the forest denoted by t. For instance, TIDs(t, [9, 6])
holds in Fig. 1a when t denotes the child forest of node 4 (named “body”). As
such, the TIDs(t,l) in the precondition stipulates that t contain enough resource
for compiling a list of the immediate children of n (i.e. the top-level nodes in t).

n.getElementsByTagName(s): when n=n and s=s, this operation returns
(the identifier of) a NodeList containing the identifiers of the elements with tag
name s in the forest underneath n. The axiom in Fig. 3 describes the case when
n is an element node. The original set of tag listeners e is extended to e′ with
(s, r) ∈ e′ where r is the return value. The search(t, s, l) assertion is defined in
Fig. 4 and describes the search result of getElementsByTagName (i.e. the list l
contains the identifiers of those element nodes in the forest t whose name matches
s). For instance, when t denotes the child forest of node 4 (named “body”) in
Fig. 1a, then both search(t, “img”, [3, 8, 2]) and search(t, “ * ”, [9, 3, 8, 6, 2]) hold.
As such, the search(t, s, l) in the precondition ensures that t contains enough
resource for compiling a list of elements named s.

f.length: when f=f identifies a NodeList, its length is returned. The axiom
in Fig. 3 describes the case when f is a forest listener NodeList on element n;
the return value is the number of n’s immediate children. This is captured by
TIDs(t,l) stipulating that list l contains the identifiers of those nodes at the
top level of child forest t. The return value is thus the length of l (i.e. |l|).

f.item(i): this is analogous to f.length with |l|i denoting the ith item of
l. The axiom in Fig. 3 describes the case when f is a tag listener NodeList on n.

4 Verifying JavaScript Programs that Call the DOM

We instantiate the method described in §3.3 to extend the SL-based JavaScript
program logic (hereafter JSLogic) in [7], to JSDOMLogic, in order to enable
DOM reasoning. We then use JSDOMLogic to reason about a realistic ad blocker
program in §4.1, and a further ad blocker in [17]. These examples are interesting
as they combine JavaScript heap reasoning with DOM reasoning.

17

JSLogic States The states of JSLogic are JavaScript heaps. A JavaScript heap,
h∈JSHeap, is a partial function mapping references, which are pairs of memory
locations and field names, to values. A heap cell is written (l, x) 7→7, stating
that the object at l has a field named x and holds value 7. An empty JavaScript
heap is denoted by 0JS; JavaScript heap composition, ◦ :JSHeap×JSHeap⇀
JSHeap, is the standard disjoint function union. The PCM of JavaScript heaps
is (JSHeap, ◦, {0JS}). The states of JSDOMLogic are then pairs of the form
(h,h), comprising a JavaScript heap h, and a DOM heap h (see Def. 5).

JSLogic Assertions, programming language and proof rules As stipu-
lated by Def. 6, the JSLogic assertions include the standard boolean, classical
and SL assertions. JSLogic further includes JavaScript heap assertions of the
form (E1, E2) 7→E3, describing a single-cell JavaScript heap. The variable store
in JavaScript is emulated in the heap. As required by Def. 6, JSLogic introduces
a derived assertion store(x,i : vi), describing the JavaScript variable store in the
heap where variables xi have values vi. The programming language of JSLogic
is a broad subset of the JavaScript language [7]. The JSLogic assertions, their
semantics, the definition of store, and the JSLogic proof rules are given in [7].

4.1 A JavaScript Ad Blocker

We use JSDOMLogic to reason about an ad blocker script used for blocking the
images from untrusted sources in a DOM tree. The adBlocker1(n) program
in Fig. 5 compiles a NodeList containing all “img” elements in the tree rooted
at n by calling the getElementsByTagName operation. It then iterates over this
NodeList, sanitising each image by executing the sanitiseImg program in §2.

At each iteration i, the subtree at node n=n is described by tree(i,e) where
ti denotes the child forest of n at iteration i, and e denotes the tag listener set
associated with n, and l denotes the list of “img” elements below n.3

Since we iterate over the “img” elements in l and inspect their attributes, we
need to partition them in into three categories: i) empty : without a “src” attribute;
ii) untrusted : with a“src” attribute and a blacklisted value; iii) trusted : with
a “src” attribute and a trusted value. At each iteration, if the node considered
is untrusted, it is sanitised and removed from the untrusted category. We thus
define a fourth category, sanitised, including those elements whose values were
initially blacklisted and are later sanitised. This is captured by partition(i)3. The
first part states that the list of “img” elements l can be partitioned into the
three categories described above where l≡ s states that set s is a permutation of
list l. The second part states that list l has been processed up to index i; i.e. the
sanitised category ss includes all the untrusted elements in l up to index i. The
last four parts describe the “img” elements according to their category.

3 All free logical variables on the right-hand side are parameters of the predicate on the
left. We omit them for readability as they do not change throughout the execution.
By contrast, the iteration number i, and the tag listeners e of node n may change
(the latter may grow by getElementsByTagName) and are explicitly parameterised.

18

cache(c), ~
f∈X

(
(c,f) 7→1 ∨(c,f) 7→0

)
unfld(i,e),∃α,β,γl

.partition(i)∗(∀i.partition(i)∼∗tree(i,e))

tree(i, e),α 7→sn[a,ti]
e
f∗search(ti,“img”,l) fld(i,e),tree(i,e)∗

(
(∀i,e. tree(i,e)∼∗unfld(i,e)) ∧ emp

)
rem(i), ∃ss. ss=̇su ∩ {|l|j | j < i} ∗ β 7→ ∅g

⊕
j∈ss

aj

partition(i), l ≡̇ se] su] st ∗ ∃ss. ss=̇su ∩ {|l|j | j < i} ∗~
j∈ss

(
αj 7→ imgj[βj�srcmj [#text−[s]−]f′j ,γj]

ej
fj

)
~
j∈se

(αj 7→ imgj[aj,γj]
ej
fj ∗ out(aj,src)) ∗~

j∈st

(
αj 7→ imgj[βj�srcmj [aj]f′j ,γj]

ej
fj ∗val(aj,vj)∗¬isB(vj)

)
~

j∈su\ss

(
αj 7→ imgj[βj�srcmj [aj]f′j ,γj]

ej
fj ∗ val(aj,vj) ∗ isB(vj)

)
{

store(n:n,cat:s,cache:c,imgs:−,len:−,i:−,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)∗fld(0,e)∗rem(0)
}

1. adBlocker1(n) , {
2. imgs = n.getElementsByTagName("img");{

∃r, e′. store(n:n,cat:s,cache:c,imgs:r,len:−,i:−,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)
∗ rem(0) ∗ fld(0,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′

}
3. len = imgs.length; i = 0;{

∃r, e′. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:0,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(0) ∗ fld(0,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′

}
{
∃r, e′, i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i) ∗ fld(i,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l|

}
4. while(i<len){
5. c = imgs.item(i);{

∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i) ∗ fld(i,e′) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l|

}
//Apply derivation steps in (10)-(12).{
∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i ,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i)∗e⊆̇e′∗(“img”,r)∈̇e′∗i<̇ |l|∗unfld(i,e′)∗((∀i,e. tree(i,e)∼∗unfld(i,e)) ∧ emp)

}
6. sanitiseImg(c,cat);{

∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i ,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i+1)∗e⊆̇e′∗(“img”,r)∈̇e′∗i<̇ |l|∗unfld(i+1,e′)∗((∀i,e. tree(i,e)∼∗unfld(i,e))∧emp)

}
// Apply derivation steps in (12)-(14).{
∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c: |l|i ,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i+1) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i<̇ |l| ∗ fld(i+1, e′)

}
7. i = i+1;{

∃r,e′,i. store(n:n,cat:s,cache:c,imgs:r,len: |l| ,i:i,c:−,isB:−,url:−)∗¬isB(s)∗cache(c)

∗ rem(i) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l| ∗ fld(i, e′)

}
8. } }

{
∃r,e′,i. store(n:n,cat:s,cache:c,imgs:−,len:−,i:−,c:−,isB:−,url:−)∗¬isB(s)

∗ cache(c) ∗ rem(|l|) ∗ e⊆̇e′ ∗ (“img”,r)∈̇e′ ∗ i≤̇ |l| ∗ fld(|l| , e′)

}
Fig. 5: A proof sketch of the adBlocker1 program3

The partition predicate describes the “img” elements in l only and does not
include the remainder of the subtree at n. At every iteration, this remainder
is untouched and the modified parts are in the partitions. We thus describe
the remainder for an arbitrary iteration i as ∀i. partition(i)∼∗tree(i,e), i.e. the
entire tree for that iteration, tree(i,e), minus its partitions. The unfolded tree at
iteration i, unfld(i,e)3, consists of the partitions at i, plus the remainder.

Note that for NodeList operations such as item (line 5), we need the folded
tree (tree(i,e)) with the entire subtree containing the “img” list l, as required by
their axioms (Fig. 3). Conversely, for the sanitiseImg call (line 6), we need the
unfolded “img” elements (partition(i)) so that we can access the relevant “img”

19

node at each iteration. We thus need to move between the folded and unfolded
tree depending on the operation considered. The fld(i,e) predicate describes the
folded tree at iteration i. The first part, tree(i,e), describes the resources of the
folded tree at iteration i. The second part contains no resources (emp); it simply
states that at any iteration i, the folded tree tree(i,e), can be exchanged for
the unfolded tree unfld(i,e). As we show in the derivation below, this second
part allows us to move from folded to unfolded resources (10-12) and vice versa
(12-14), for any i. The bi-implication of (10) follows from the definition of fld
and that empty resources (emp) can be freely duplicated. In (11) we eliminate
the first universal quantifier. We then eliminate the adjunct (P ∗ (P ∼∗Q)V Q)
and arrive at (12). The implication of (13) follows from the definition of unfld
and the elimination of the first universal quantifier. To get (14), we eliminate the
adjunct, eliminate the existential quantifiers and wrap the definition of fld.

fld(i, e)⇔ tree(i, e) ∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp)
∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp) (10)

⇒ tree(i, e) ∗ (tree(i, e)∼∗unfld(i, e)) ∗ (∀i,e. tree(i′,e)∼∗unfld(i,e)∧emp) (11)

V unfld(i,e) ∗ (∀i,e. tree(i, e)∼∗unfld(i,e) ∧ emp) (12)

⇒ ∃α, β, γl
. partition(i) ∗ (partition(i) ∼∗tree(i, e))

∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp) (13)

V tree(i, e) ∗ (∀i, e. tree(i, e)∼∗unfld(i, e) ∧ emp) ⇔ fld(i, e) (14)

Recall that when the value of an attribute node is updated via the setAt-

tribute operation, its text forest is replaced with a new text node containing
the new value, and its old text forest is added to the grove (see axiom (3)). As
such, at each iteration if we sanitise the “src” attribute of c (via sanitiseImg in
line 6), then the old text forest of the “src” attribute is moved to the grove. This
is described by the rem(i) assertion stating that for each attribute node sanitised
so far (i.e. those in ss), the old text forest aj has been added to the grove.

Recall that sanitiseImg (Fig. 2) maintains a local cache of blacklisted URLs,
implemented as an object at c with one field per URL (where (c, f) 7→1 asserts
the URL f is blacklisted, and (c, f) 7→0 asserts that there are no cached results
associated with f). We thus define the cache as the collection of all fields (denoted
by X) on c with value 1 or 0, where~ is the iterated analogue of ∗.

We give a proof sketch of adBlocker1 in Fig. 5. The precondition consists
of the variable store, the cache and the unprocessed (iteration 0) tree. The
postcondition comprises the store, the cache and the fully processed (iteration
|l|) tree with the tag listeners of n extended with a new listener for “img”.

Concluding remarks We use SSL [25] to formally specify an expressive frag-
ment of DOM Core Level 1, closely following the standard [1]. In comparison
to existing work [9,22], our specification i) allows for local and compositional
client specification and verification; ii) can be simply integrated with SL-based
program logics; and iii) is faithful to the standard with respect to the behaviour
of live collections. We demonstrate our compositional client reasoning by extend-
ing JSLogic [7] to incorporate our DOM specification and verifying functional
properties of ad-blocker client programs that call the DOM.

20

Acknowledgements This research was supported by EPSRC programme grants
EP/H008373/1, EP/K008528/1 and EP/K032089/1.

References

1. W3C DOM standard, www.w3.org/TR/REC-DOM-Level-1/level-one-core.html.
2. N. Biri and D. Galmiche. A Separation Logic for Resource Distribution. In FST

TCS, 2003.
3. N. Biri and D. Galmiche. Models and separation logics for resource trees. In Journal

of Logic and Computation, 2007.
4. M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudz̆iūnienė,

A. Schmitt, and G. Smith. A mechanised JavaScript specification. In POPL, 2014.
5. C. Calcagno, T. Dinsdale-Young, and P. Gardner. Adjunct elimination in context

logic for trees. In Programming Languages and Systems, 2007.
6. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In POPL,

2005.
7. P. Gardner, S. Maffeis, and G. Smith. Towards a program logic for JavaScript. In

POPL, 2012.
8. P. Gardner, A. Raad, M. Wheelhouse, and A. Wright. Local reasoning for concurrent

libraries: mind the gap. In MFPS, 2014.
9. P. Gardner, G. Smith, M. Wheelhouse, and U. Zarfaty. Local Hoare Reasoning

about DOM. In PODS, 2008.
10. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core

calculus for Java and GJ. In OOPSLA, 1999.
11. S. Jensen, A. Møller, and P.Thiemann. Type analysis for JavaScript. In SAS, 2009.
12. S.H. Jensen, M. Madsen, and A. Møller. Modeling the HTML DOM and browser

API in static analysis of JavaScript Web applications. In ESEC/FSE ’11, 2013.
13. B. S. Lerner, M. Carroll, D. P. Kimmel, H. Q. La Vallee, and S. Krishnamurthi.

Modeling and reasoning about DOM events. In WebApps, 2012.
14. S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for JavaScript. In

APLAS, 2008.
15. C. Park, S. Won, J. Jin, and S. Ryu. A static analysis of JavaScript web applications

in the wild via practical DOM modeling (T). In ASE, 2015.
16. M. Parkinson. Local reasoning for Java. PhD thesis, Cambridge University, 2006.
17. A. Raad. (To appear). PhD thesis, Imperial College, 2016.
18. V. Rajani, A. Bichhawat, D. Garg, Deepak, and C. Hammer. Information flow

control for event handling and the DOM in web browsers. In CSF, 2015.
19. J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In

LICS, 2002.
20. A. Russo, A. Sabelfeld, and A. Chudnov. Tracking information flow in dynamic

tree structures. In ESORICS, 2009.
21. A. Møller S. H. Jensen, M. Madsen. Modeling the HTML DOM and browser API

in static analysis of JavaScript web applications. In FSE, 2011.
22. G. Smith. Local reasoning for web programs. PhD thesis, Imperial College, 2010.
23. N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Verifying

higher-order programs with the Dijkstra monad. In PLDI, 2013.
24. P. Thiemann. A type safe DOM API. In DBPL, 2005.
25. A. Wright. Structural separation logic. PhD thesis, Imperial College, 2013.

	DOM: Specification and Client Reasoning
	Introduction
	Overview
	A Formal DOM Specification
	Verifying JavaScript Programs that Call the DOM

	A Formal DOM Specification
	DOM Model
	DOM Assertions
	PLDOMLogic
	DOM Operations and Axioms
	Live Collections

	Verifying JavaScript Programs that Call the DOM
	A JavaScript Ad Blocker

